COBOL and CICS Command Level
Conversion Aid

for 05/390 & MVS & VM

<|lI!

User's Guide

Version 2 Release 1

SC26-9400-03

Note

Before using this information and the product it supports, be sure to read the general information under

Third Edition (September 2002)

This edition applies to COBOL and CICS Command Level Conversion Aid for OS/390 & MVS & VM Version 2
Release 1 Modification 0 (CCCA, program number 5648-B05), and to all subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

This publication is available on the Web at:
www.ibm.com/s390/le/assist/tools/ccca.html

A form for reader's comments appears at the back of this publication. If the form has been removed, address your
comments to:

IBM Corporation

H150/090

555 Bailey Avenue

San Jose, CA

95141-1003

US.A.

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1982, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
TablesV
FiguresVi

AboutthisbookiXx

How this book is organizedix
How to read the syntax diagramsXx

Summary of changes Xxiii

Fourth edition (July 2013)xii
Third edition (September 2002) xiii
Second edition (October 1988) xiv

Chapter 1. Introduction 1

What CCCA does. .
Converting to COBOL 85 Standard Language o1
Converting using the Millennium Language

—

Extensions . .2
How CCCA works .4
BLL cell conversion . .4
Industry standards .5
Chapter 2. Getting started . .7
Dealing with source produced by earlier COBOL
compilers . 4
What to do before convertlng 4
Accessing CCCA8
Setting environment options (MVS only) B
Navigating the menus and panels.10
Master menu.12
Converter menu. . . B 4
LCP Development Aid menu14
Optionsmenu15
Chapter 3. Converting COBOL
programs . . . e . 17
Setting source and target language levels R V4
When the source and target language levels are
thesame18
Setting conversion options 019
Submitting the conversion job under MVS ... 27
Running the conversion job under VM32
Reading the Diagnostic listing35
Conversion return codes37
Chapter 4. DATE FORMAT Conversion
Option. 39
Millennium Language Extensmns (MLE) and Date
Fields3
Definition of terms39
Date Field.40
Century window40
DATE FORMAT Clause40

© Copyright IBM Corp. 1982, 2013

What you need to supply to CCCA41
Date Identification file.42
Selecting the DATE FORMAT Conversron Optlon . 46
How the DATE FORMAT Conversion Option works 46
Checking DATE FORMAT Clause syntax . . . 46

Chapter 5. Conversion reports and the
conversionlog49

Generating conversion reports49
When there's nothing to report...49
Program/File report50
File/Program report53
Copy/Program report.54
Program/Copy report.54
Call/Program report55
Program/Call report56

Using the conversion log RN V4
Browsing or updating the conversion log .57
Erasing the conversionlog58

Chapter 6. Customizing CCCA 61

How CCCA invokes LCPs63
Customizing the way CCCA converts a language
element.64
Customizing CCCA to convert an addltlonal

language element64
Updating the COBOL reserved word Data Set. . .66
Compiling LCPs under MVS68
Compiling LCPs under VM70
Deleting LCPs and activating/ deactlvatlng

debugging for LCPs71
Generating a directory of the LCP hbrary .. .72
Updating the message file73

Chapter 7. Developing Language
Conversion Programs L 77

What is an LCP?2.77
What LCPsdo77
LCP structure.77
LCP divisions78
LCP source line format78
Characters.78
Data item 1dent1f1ers and paragraph names. . .79
Reserved words79
Literals.80
Comment lines80
Punctuation80
LCP statement summary81
Identification Division.81
CONVER statement81
Data Division (Optional)83
Procedure Division.84
ADD statement84
Conditions.8
EXIT statement86
iii

iv Ccca

GO TO statement . 86
IF statement . . 86
MOVE statement . 88
Paragraph names . 88
PERFORM statement . . 89
SUBTRACT statement . . 90
LCP functions .91
Using LCP functlons . .91
Retrieving tokenized source . .92
Bypassing token identifiers . .93
Removing tokenized source . . 94
Modifying tokenized source and 1nsert1ng tokens 94
Editing tokens . 96
Constructing tokens . .9
Manipulating files . . 101
Control file . . 102
Work file . . 104
Using LCPs . . 106
Controlling LCP mvocatlon . 106
Processing LCPs . 107
Tokenization. . 108
Debugging LCPs . . . 110
Processing differences between tokens and
elements . .11
Appendix A. Converted COBOL
language elements . . 117
Appendix B. Converted CICS
commands 141
Linkage section. . 141
Working-Storage SECtIOI‘l . 141
Appendix C. Messages . 145
Converter error messages . 145
LCP compiler error messages . . 148
Tokenization diagnostics. . . 150
Conversion diagnostics from LCPs . . 151
Appendix D. LCP reserved words. . 167
Appendix E. Predefined data items 175
Appendix F. List of LCP functions . 187
Appendix G. LCP directory . 191
Converted CICS commands . 191

Completely converted COBOL statements .
COBOL statements converted with warning .
COBOL statements flagged .

LCPs corresponding to information .

Appendix H. Sample output
Program/File report .

File/Program report .

Copy/Program report

Call/Program report .

LCP directory . .

Compilation of an LCP .

COBOL conversion

COBOL conversion with COPY .
COBOL conversion with CICS commands .
Tokenization.

LCP debugging.

Appendix I. Maintaining CCCA under
MVS
Re-installing CCCA
Applying service updates
What you receive .
Checklist for applying service .
Step 1. Prepare to install service .
Step 2. Receive the service . .
Step 3. Accept applied service (optlonal)
Step 4. Apply the service
Step 5. Test the service
Step 6. Accept the service
Removing CCCA .
Reporting a problem with CCCA
Obtaining service information .

Notices . . e
Programming interface mformatlon .
Trademarks .

Bibliography.

IBM COBOL for 0OS/390 & VM

IBM COBOL for MVS & VM . .
Enterprise COBOL for z/OS & OS/390.
Other publications. S

Index .

. 191
. 194
. 195
. 197

. 199
. 199
. 200
. 200
. 201
. 201
. 205
. 211
. 217
222
. 238
. 251

. 257
. 257
. 257
. 257
. 257
. 257
. 258
. 258
. 258
. 258
. 258
. 258
. 259
. 259

. 261
. 262
. 262

. 263
. 263
. 263
. 263
. 263

. 265

Tables

Source language levels .

Target language levels .

3. Valid combinations of source and target
language levels . .
LCP characters—their meanmgs and uses
5. LCP statement summary .

N o=

L

© Copyright IBM Corp. 1982, 2013

.18

78

. 81

Language elements converted to specified
target language . .

Converted CICS commands

Summary of steps for installing service on
CCCA .

Component IDs .

. 117
. 142

. 257
. 259

vi cCcca

Figures

—_
POV RNUTE WN

[y

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.

The three conversion phases
Environment Options panel

Map of CCCA menus and panels
Master menu . Lo
Converter menu . .

LCP Development Aid menu.

Options menu. .

Language LEVEL panel

Conversion Options panel 1 .
Conversion Options panel 2 .
Conversion Job Statement Information panel
(MVS) .

Conversion Selectlon panel (MVS)
Conversion Member List panel (MVS)
Conversion Submission panel (MVS) .
Conversion Selection panel (VM)
Conversion Member Selection panel (VM)
Extract from a diagnostic listing.
Program/File report.

File/Program report.

Copy/Program report .
Program/Copy report .

Call/Program report

Program/Call report

Conversion Log panel .

Confirm Erase Log panel .

How CCCA invokes LCPs

Reserved Words panel .

© Copyright IBM Corp. 1982, 2013

.11
.12
.13
.14
.15
.17
.19
.23

.27
. 28
. 28
.31
.32

33

. 36
. 50
. 53
. 54
. 55
. 56
. 56
. 57
. 59
. 62
. 66

28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.
42.

43.
44.
45.
46.
47.

48.

LCP compiler job statement information panel

(MVS)

LCP Compiler Selectlon panel (MVS)

LCP Compiler Submission panel (MVS)
LCP Compiler Selection panel (VM)

LCP compiler member selection panel (VM)
Delete/Debug LCP panel .

Extract from a directory of the LCP 11brary
Messages panel . .

Saving and repositioning TOKEN—POINTER
Control and work file record relationships
OTHERWISE LCP source code. .
OTHERWISE LCP compilation listing
Section of a tokenized COBOL source
program .

Trace of OTHERWISE LCP executlon
Section of the Diagnostic listing showing
result of OTHERWISE conversion .
TKNTEST LCP compilation listing

Source of program to be converted
Tokenization of the COBOL source program
containing tokens and elements (Part 1 of 2)
Tokenization of the COBOL source program
containing tokens and elements (Part 2 of 2)
Trace of TKNTEST LCP execution (Part 1 of
Trace of TKNTEST LCP execution (Part 2 of
2)

71

102

. 107

108

. 109

110

111
. 112
. 112
. 113
. 114
. 115

. 116

vii

viii Ccca

About this book

This book describes COBOL and CICS Command Level Conversion Aid for
0S5/390 & MVS & VM (CCCA, program number 5648-B05).

CCCA helps you convert old COBOL 68 Standard and COBOL 74 Standard
language in source programs and copy books to COBOL 85 Standard language. For
a definition of these COBOL standards, see [“Industry standards” on page 5|

CCCA can also help you to solve your Year 2000 problems by converting your
programs to make use of the millennium language extensions (MLE).

How this book is organized
This book is divided into these chapters and appendixes:

[Chapter 1, “Introduction,” on page 1]
Summarizes what CCCA does, and how it works.

[Chapter 2, “Getting started,” on page 7
Describes:
¢ What to do before converting
e Accessing CCCA
¢ Setting CCCA environment options
* Navigating CCCA menus and panels

[Chapter 3, “Converting COBOL programs,” on page 17|
Describes the procedure for converting COBOL programs:
* Setting source and target language levels
* Setting conversion options
¢ Submitting the conversion job
* Reading the Diagnostic listing

[Chapter 4, “DATE FORMAT Conversion Option,” on page 39|
Describes:
* Millennium language extensions and date fields
* MLE terms
¢ The DATE FORMAT clause
* What you need to supply to CCCA for the DATE FORMAT conversion
option
¢ How to select the DATE FORMAT conversion option
¢ How the DATE FORMAT conversion option works

[Chapter 5, “Conversion reports and the conversion log,” on page 49
Describes how to:
* Generate conversion reports
* Browse, update, and erase the conversion log

[Chapter 6, “Customizing CCCA,” on page 61|
Describes how to:
¢ Customize CCCA
¢ Update the COBOL Reserved Word data set
¢ Compile Language Conversion Programs (LCPs)
* Delete LCPs from the LCP library
* Activate and deactivate debugging for each LCP
* Print a directory of the LCP library

© Copyright IBM Corp. 1982, 2013 ix

¢ Update messages

[Chapter 7, “Developing Language Conversion Programs,” on page 77|
Describes the language and functions you use to develop LCPs.

[Appendix A, “Converted COBOL language elements,” on page 117
Lists COBOL language elements converted by CCCA.

[Appendix B, “Converted CICS commands,” on page 141|
Lists CICS® commands converted by CCCA.

[Appendix C, “Messages,” on page 145|
Lists CCCA messages.

[Appendix D, “LCP reserved words,” on page 167
Lists words that have a special meaning to the LCP compiler (you cannot
use these words for your LCP data item identifiers or LCP paragraph
names).

[Appendix E, “Predefined data items,” on page 175|
Lists data items that are predefined by the LCP compiler.

[Appendix F, “List of LCP functions,” on page 187
Lists functions you can use in LCPs.

[Appendix G, “LCP directory,” on page 191
Lists the supplied LCPs.

[Appendix H, “Sample output,” on page 199|
Lists sample CCCA output:
* Reports
¢ LCP directory
¢ LCP compilation
* COBOL conversions
¢ Tokenization
* LCP trace (for debugging)

[Appendix I, “Maintaining CCCA under MVS,” on page 257
Describes:
* Re-installing CCCA
* Applying Service Updates
¢ Removing CCCA
¢ Reporting a Problem with CCCA
* Obtaining Service Information

How to read the syntax diagrams

X CCCA

Throughout this book, syntax descriptions use the structure defined below.

* Read the syntax diagrams from left to right, from top to bottom, following the
path of the line as indicated by the following symbols:
»»—— The beginning of a statement.
— The statement syntax is continued on the next line.

»— The statement is continued from the previous line.

—< The end of a statement.

Diagrams of syntactical units other than complete statements start with the »——
symbol and end with the — symbol.

* Required items appear on the horizontal line (the main path).
»>——STATEMENT

required item ><

¢ Optional items appear below the main path.

»»>——STATEMENT >
|—opt1’ona1 1'temJ

* When you can choose from two or more items, they appear vertically, in a stack.

A

If you must choose one of the items, one item of the stack appears on the main
path.

A

»—STATEMENT—Erequired choicel >
required choiceZ—]

If choosing one of the items is optional, the entire stack appears below the main
path.

»»>——STATEMENT
i:optiona] choicel:‘
optional choice?

* An arrow returning to the left above the main line indicates an item that can be
repeated.

[
v

»>——STATEMENT:

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

repeatable item ><

¢ Language Conversion Program (LCP) key words appear in uppercase letters.
They must be spelled exactly as shown. Variables appear in all lowercase letters.
They represent user-supplied names or values.

* If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

The following example shows how the syntax is used.

»»>——STATEMENT required choice-1
_Erequw'ed ch01ce—2J i:optmna] choice-1—
opt1ona1 choice-2—

A\
A

The key word must be specified and coded as shown.
One of these two options is required.

This is a repeatable item.

EE®EaA

You can select one or more of these options.

About this book X1

xii ccca

Summary of changes

Fourth edition (July 2013)

The following major enhancements and changes have been made to this manual
since the previous edition. All changes are marked in the text by a change bar in
the left margin.

COBOL Version 5 changes:
* Removal of MLE functionality
* Removal of USE ... AFTER ... LABEL PROCEDURE ...

Third edition (September 2002)

© Copyright IBM Corp. 1982, 2013

The following major enhancements and changes have been made to this manual
since the previous edition. All changes are marked in the text by a change bar in
the left margin.

* Modifications to messages (Appendix C, “Messages,” on page 145)).

+ Additional DATE FORMAT clauses (Chapter 4, “DATE FORMAT Conversion|
[Option,” on page 39).

+ Modifications to the following language elements (Appendix A, “Converted|
[COBOL language elements,” on page 117):
- ASSIGN
- CBL
— CURRENT-DATE
— ERROR declaratives
- IF
— PERFORM
— PROCESS
— TIME-OF-DAY
- TRANSFORM
— UNSTRING
- UPSI
- VALUE
- WHEN-COMPILED

* Process for deleting or debugging LCPs modified (“Deleting LCPs and|
[activating /deactivating debugging for LCPs” on page 71)).

* DLI option added to the Conversion Selection panel (“Submitting the conversion|

liob under MVS” on page 27) to support the recognition of DLI processing.
* Process for maintaining the COBOL Reserved Word file modified (“Updating the
[COBOL reserved word Data Set” on page 66).

* Modifications to the Conversion Options Panel 2 (]”Setting conversion options"|
orpage 19,

+ Additional predefined data items (Appendix E, “Predefined data items,” on page]

175).
* Enterprise COBOL for z/OS® and 0S/390° added as a target language. COBOL

for MVS ™ & VM and COBOL for OS/390 & VM combined into a single target
language (IBM® COBOL) (“Setting source and target language levels” on page|

[19.

xiii

Second edition (October 1988)

The following major enhancements and changes have been made to this manual

since the previous edition:

e Where it differs to MVS, the procedure for converting a COBOL program under
VM has been added to |Chapter 3, “Converting COBOL programs,” on page 17.|
This new section appears under|[’Running the conversion job under VM” on|

* Where it differs to MVS, the procedure for compiling an LCP under VM has

been added to |[Chapter 6, “Customizing CCCA,” on page 61.| This new section
appears under [‘Compiling LCPs under VM” on page 70.

xiv CCCA

Chapter 1. Introduction

This chapter summarizes:
* What CCCA does
« How CCCA works

What CCCA does

As supplied, COBOL and CICS Command Level Conversion Aid for OS/390 &

MVS & VM (CCCA) helps you convert COBOL source:
* To COBOL 85 Standard language

* To make use of the millennium language extensions (MLE)

Converting to COBOL 85 Standard Language

listed in

Using CCCA, you can convert COBOL source from the sour
Table 1fto any of the target language levels listed in

Table 1. Source language levels

ce language levels

Table 2

Program number

Source language Version Release
DOS/VS COBOL

0S/VS COBOL

VS COBOL II ,2,0r3
COBOL for VSE/ESA

COBOL for MVS & VM
COBOL for OS/390 & VM
Enterprise COBOL

BN R e
N NN~ R~ DN W

5746-CB1
5740-CB1
5668-958
5686-068
5688-197
5648-A25
5655-G53

Table 2. Target language levels

COBOL 85 Standard language Version Release

VS COBOL I 1
COBOL for VSE/ESA 1
COBOL for MVS & VM 1
COBOL for OS/390 & VM 2
Enterprise COBOL for z/OS and 3
0S/390

Enterprise COBOL for z/OS 5 0
Note:

=N = e

Program number

5668-958
5686-068
5688-197
5648-A25
5655-G53

5655-G53

1. DATE FORMAT conversion option cannot be used (see|“Converting using the|

[Millennium Language Extensions” on page 2).

CCCA identifies COBOL language elements and CICS commands in the input

source programs that are:
* Not supported by the target language
e Supported in a different manner

then does one of the following:
* Converts them to the equivalent in the target language

© Copyright IBM Corp. 1982, 2013

Introduction

* Removes them
* Flags them

For details on how CCCA converts specific COBOL language elements and CICS
commands, see [Appendix A, “Converted COBOL language elements,” on page 117
and |Appendix B, “Converted CICS commands,” on page 141

Converting using the Millennium Language Extensions

2 ccca

If you plan to make use of the millennium language extensions to help solve your
Year 2000 problem, an option within CCCA will help reduce the workload
associated with converting your programs.

If you select this option, CCCA adds the DATE FORMAT clause to the data
description entries of the data items that have been identified as containing dates.
In the remainder of this document, this is referred to as the DATE FORMAT
conversion option.

CCCA performs the DATE FORMAT conversion in addition to any other
conversion required for converting to a different level of COBOL. The level of
COBOL to which you are converting must support the DATE FORMAT clause.

If your program has been written using a level of COBOL that supports the DATE
FORMAT clause but the program source does not include the DATE FORMAT
clause, you can use CCCA to perform the DATE FORMAT conversion only. This
applies to the following levels of COBOL:

¢ COBOL for VSE/ESA

¢ COBOL for MVS & VM

¢ COBOL for OS/390 & VM

* Enterprise COBOL for z/OS and OS/390 (pre Version 5)

In this case, you:

* Specify the same level of COBOL for both the source and target languages (see
[“Setting source and target language levels” on page 17)

¢ Select the DATE FORMAT conversion option (see [Chapter 4, “DATE FORMAT|
[Conversion Option,” on page 39)

* Set the conversion option Remove obsolete elements to N (see [“Setting conversion|
[options” on page 19)

Introduction

COBOL
source

copy
members

COBOL
source
program

Conversion
job

Phase 2:

Create
change
requests

Phase 1:
Analyze
input
source

Converted
/ If necessary, "

COBOL
source p inspect and
copy ' manually
members convert
Converted any
COBOL flagged
source source
program lines
‘ ,,,,,,
Phase 3:
Apply
changes and
generate
output
Diagnostic
listing
Report jobs
(program conversion statistics)
4 N

Figure 1. The three conversion phases

Chapter 1. Introduction 3

Introduction

How CCCA works

CCCA is an interactive system comprising ISPF panels that enable you to access a

batch (MVS) or foreground (VM) conversion application. You use CCCA online

ISPF panels to:

* Define the type of conversion you want

e Submit a batch job (MVS), or run CCCA in foreground (VM), to convert your
programs

[Figure 1 on page 3 shows the three phases of a conversion job.

Phase 1: Analyze input source
At the start of a conversion job, phase 1:

* Extracts copy members from the appropriate copy libraries and merges
them with the source program

* Translates the original source program and copy books into a set of
character strings known as tokenized source

* For each language element in the tokenized source, identifies whether
conversion is required, and if so, which Language Conversion Program
(LCP) to use

Phase 2: Create change requests
For each item that needs converting, phase 2:
* Loads an LCP
* Runs the LCP
* Generates change requests

Phase 3: Apply changes and generate output
Finally, phase 3:

* Applies the change requests from phase 2, creating new source programs
and, if required, new copy members

* Generates the Diagnostic listing

BLL cell conversion

4 ccca

CICS programs written in DOS/VS COBOL and OS/VS COBOL have to maintain
addressability to storage not contained within the WORKING-STORAGE
SECTION. In order to satisfy program requests, these programs must keep track of
the storage area addresses allocated by CICS. This requires the manipulation of
BLL cells within the application program.

For CICS programs written in any of the target languages, this is no longer
required. The manipulation of BLL cells is no longer supported, so conversion of
the source code is necessary. CCCA performs much of the required BLL cell
conversion.

CCCA uses the CICS translator and the OS/VS COBOL compiler to perform the
BLL cell conversion.

CCCA only performs BLL cell conversion if:

— Under MVS, you have set the CICS option to Y on the Conversion (Selection)
panel (see [Figure 12 on page 28)

— Under VM, you have set the CICS option to Y on the Conversion Selection
panel (see [Figure 15 on page 32),

Introduction

* You have set the Source language level to 1, 2, 3, or 4 (DOS/VS or OS/VS
COBOL) on the Language Level panel (see [Figure 8 on page 17), and

* CCCA determines that there are BLL cells in the Linkage section of the source
program to be converted.

To perform BLL cell conversion, CCCA:
* In phase 1, reduces the source program to a Linkage area

* In a number of intermediate steps between phase 1 and phase 2:
— Translates and compiles the reduced program
— Analyzes the compiler's glossary output

 Passes the compiler's glossary output to phase 2

Industry standards

The term “COBOL 68 Standard” is used in this document to refer to the following
standards:

¢ X3.23-1968, American National Standard for Programming Language COBOL
* ISO International Standard 1989-1972 COBOL

The term “COBOL 74 Standard” is used in this document to refer to the following
standards:

* X3.23-1974, American National Standard for Programming Language COBOL
* ISO International Standard 1989-1978 COBOL

The term “COBOL 85 Standard” is used in this document to refer to the following
standards:

* X3.23-1985, American National Standard for Information Systems - Programming
Language - COBOL

¢ X3.23a-1989, American National Standard for Information Systems -
Programming Language - Intrinsic Function Module for COBOL

¢ ISO 1989:1985, Programming languages - COBOL

* 15O 1989/ Amendment 1, Programming languages - COBOL - Amendment 1:
Intrinsic function module

Chapter 1. Introduction 5

Introduction

6 ccca

Chapter 2. Getting started

This chapter describes:

* Dealing with source produced by earlier COBOL compilers
* What to do before converting

* Accessing CCCA

* Setting CCCA environment options

* Navigating CCCA menus and panels

Dealing with source produced by earlier COBOL compilers

The earlier OS/VS COBOL compilers contained a number of undocumented
extensions. Where possible, CCCA attempts to handle these extensions. However,
CCCA will not always correctly convert OS/VS COBOL code that compiles with
warning-level or error-level diagnostics using the OS/VS COBOL 2.4 compiler.

If you have any OS/VS COBOL programs that you want CCCA to convert, which
have not been compiled with the OS/VS COBOL 2.4 compiler, it is recommended
that before you input these programs to CCCA you:

* Recompile each program using OS/VS COBOL 2.4

¢ Check for, and correct, any compiler-related warning-level or error-level
diagnostics that result

Note: One notable undocumented extension of the pre-OS/VS COBOL 2.4
compiler that CCCA does not handle are COPY statements which are not
terminated with a period (“.”).

Therefore, at the very least, you should ensure that all COPY statements, in any of
your programs that you intend to convert using CCCA, are terminated with a
period.

What to do before converting
Before using CCCA to convert your programs:

Decide whether to customize CCCA
Before converting any programs, you must decide on one of these courses
of action:
* Use CCCA as supplied
¢ Customize CCCA

Most users will opt to use CCCA as supplied.

If, however, you require:

* Additional (possibly non-COBOL) language elements to be converted,
flagged, or removed

* Particular language elements converted differently

then you can customize CCCA so that it meets your conversion
requirements.

If you are interested in customizing CCCA, read [Chapter 6, ”Customizingl
CCCA,” on page 61|and [Chapter 7, “Developing Language Conversion|
Programs,” on page 77.|

© Copyright IBM Corp. 1982, 2013 7

Getting started

For a list of the COBOL language elements converted, removed, or flagged
by CCCA as supplied, see |Appendix A, “Converted COBOL language]
flements,” on page 117

Ensure your source programs are error-free
Ensure your source programs compile and execute without errors.

To enhance conversion performance...
Setting the Check procedure names option to N reduces conversion time.
For details, see page @

Restrictions
CCCA does not support certain COBOL 85 Standard language elements
and certain IBM extensions in source code. Unsupported language
elements include:

* Nested programs
* Program names that do not conform to the COBOL 85 Standard
* Object-oriented class and method definitions

Accessing CCCA

To access CCCA:
1. Log on to TSO (under MVS) or CMS (under VM)
2. Invoke ISPF

3. Select CCCA from your system's application menu—the Master menu appears
(see [Figure 4 on page 12)

4. (MVS only) If you have not already done so, you must set the environment
options before you do anything else.

Setting environment options (MVS only)

To set the environment options:
* Go to panel O.1 to display the Environment Options panel, shown in .

COMMAND ===>

High Tevel qualifiers:
Non-VSAM Shared Data Sets..
Non-VSAM Private Data Sets.
VSAM Shared Data Sets......
VSAM Private Data Sets.....

\

\

nm o uwon

nm o uwon

n u u n
v

v

UNIT for Work Files
CLIST debuggingcovun.. > Y/N

Job statement information: (Verify before proceeding)

n - u n
vV VvV Vv

\

SYSOUT CLASS ===>

\fFl Help PF3 Exit PF4 Return ENTER Save options

Figure 2. Environment Options panel

¢ Enter values for:

8 ccca

Getting started

High Level Qualifiers
The data sets used by CCCA are divided into two categories, “Shared” and
“Private”. Shared data sets are available to all users, and were created as
part of the installation process. Each user requires a unique set of Private
data sets which are used in read /write mode during conversion.

Non-VSAM Shared Data Sets
The high level qualifier name that has been assigned to the Non-VSAM
Shared data sets. This name will be available from the system
programmer who installed CCCA.

(Dialog variable ABJNVSH)

Non-VSAM Private Data Sets
The high level qualifier name to be assigned to the Non-VSAM Private
data sets. The default is Userid.

(Dialog variable ABJNVPR)

VSAM Shared Data Sets
The high level qualifier name that has been assigned to the VSAM
Shared data sets. This name will be available from the system
programmer who installed CCCA.

(Dialog variable ABJVSSH)

VSAM Private Data Sets
The high level qualifier name to be assigned to the VSAM Private data
sets. The default is Userid.

(Dialog variable ABJVSPR)

UNIT for Work Files
The unit on which the CCCA work files are allocated.

(Dialog variable ABJUNIT)
CLIST debugging

Y CCCA provides you with a statement-by-statement CLIST screen
display to assist with error determination. Use this option if you are
experiencing CLIST problems.

N No CLIST screen is displayed.
The default is N.
(Dialog variable ABJBUG)

Job statement information
The job card information for the batch job that CCCA submits. These lines
are submitted as part of batch jobs exactly as they are entered (except for
entirely blank lines, which are ignored). All of the rules of JCL must be
followed. CCCA does not validate this information.

(Dialog variables BJC1, BJC2, BJC3, and B]JC4)
See following Note.

SYSOUT CLASS
The output class to which you want your CCCA batch job output sent.

The output class can be:
— An asterisk (*)— indicating the default value for your environment.

Chapter 2. Getting started 9

Getting started

— Any letter (A through Z) or any numeral (0 through 9), indicating a
specific output class.

Note: The output class that you enter on the Environment Options panel
becomes the default output class for all subsequent jobs that you submit during
the current session of CCCA. You can, however, assign a different output class
for an individual job at the time of submitting that particular conversion job-see
“Submitting the conversion job under MVS” on page 27 and [“Compiling LCPY
under MVS” on page 68|

* Press Enter.

JCL is generated to create any private data sets required by CCCA that currently
do not exist.

The generated job consists of JCL to:

— Define Sequential data sets required for installation verification.

— Define required VSAM clusters, and load files from members in the sample
library.

CCCA creates an edit session for the generated JCL.

* You must modify this JCL (using the editor) to provide installation-specific
information. When you have done this, use the TSO SUBMIT command to
submit the job for batch processing.

* Once submission is completed, press Enter.

CCCA exits the edit session and returns to the Environment Options panel.

Navigating the

10 ccca

menus and panels

To exit CCCA
If you are not at the Master Menu, press PF4.

From the Master Menu, press PF3 or PF4.

To select an option from a menu
In the Option ===> field, type the highlighted option number or letter then
press Enter.

To go to any menu or panel from any other menu or panel
Type an equal sign (=) followed by the options you would enter to get
there from the Master Menu. Separate the options with periods.

For example: to go to the Environment Options panel, type =0.1 in the
Option ===> or Command ===> field, then press Enter.

To go to any menu or panel from the Master Menu
Type the options separated by periods (as above), without an equal sign.

For example: to go to the Conversion Log panel from the Master Menu,
type 1.L in the Option ===> field, then press Enter.
The following keys have standard functions in CCCA:
PF1 Displays Help for the current menu or panel
PF3 Exits the current menu or panel, and returns to the previous menu
PF4 Returns to the Master Menu from any menu or panel (except Help)
Enter Saves changes you have made to the current panel

Within Help, PF3 and PF4 exit the current Help panel, and take you back to the
menu or panel you were at when you pressed PF1.

shows a map of CCCA menus and panels.

Getting started

—> Conversion

Conversion reports

Converter Menu

—» Conversion Log

Lo Erase Log

COBOL
Reserved Words

—» LCP Compiler

Master Menu el Qevelopment Delete/Debug LCP
Aid Menu

LCP Directory

- Messages

N Environment
Options (MVS only)

—» Language Level

Conversion
) Options 1

Conversion
g Options 2

Figure 3. Map of CCCA menus and panels

The following sections describe the CCCA menus.

Chapter 2. Getting started 11

Getting started

Master menu
The Master Menu shows the basic CCCA options (see .

Ve
———————————————————————————— CCCA Master Menu ----------mmmmmmm oo
Option ===>

Userid - VCATRCA
Terminal - 3278

1 CONVERT - Convert COBOL source programs Time - 09:42
PF Keys - 24

2 CUSTOMIZE - LCP Development Aid Applid - ABJ

0 OPTIONS - Set environment and conversion options

COBOL and CICS Command Level Conversion Aid for 0S/390 & MVS & VM
5648-B05 Version 2 Release 1
Copyright (C) IBM Corp 1982, 1998 - A1l rights reserved

\\PFl Help PF3 Exit PF4 Return

Figure 4. Master menu

On this menu, you can select:

1 CONVERT
Shows the Converter Menu.

If you use CCCA as supplied, the Converter Menu contains all the functions
you will need.

For details, see [“Converter menu.”|

2 CUSTOMIZE
Shows the Language Conversion Program (LCP) Development Aid Menu,
containing options for customizing CCCA.

For details, see ["LCP Development Aid menu” on page 14.]

0 OPTIONS
Shows the Options Menu, with options for defining:
* High level qualifiers for CCCA VSAM files (MVS only)
¢ Source and target language levels
¢ CCCA conversion job and report job details
¢ Output that CCCA generates

For details, see [“Options menu” on page 15)

Converter menu

To view the Converter Menu (shown in [Figure 5 on page 13, select option 1 from
the Master Menu.

12 ccca

Getting started

4 N
——————————————————————————— CCCA Converter Menu --------=-----ommmmmmmmmmo o
Option ===>
1 OPTIONS - Set environment and conversion options
2 CONVERT PROGRAM - Convert COBOL source programs
3 PROGRAM/FILE - Generate Program/File report
4 FILE/PROGRAM - Generate File/Program report
5 COPY/PROGRAM - Generate Copy/Program report
6 PROGRAM/COPY - Generate Program/Copy report
7 CALL/PROGRAM - Generate Call/Program report
8 PROGRAM/CALL - Generate Program/Call report
L CONVERSION LOG - Browse and update conversion statistics
E ERASE LOG - Delete conversion statistics
PF1 Help PF3 Exit PF4 Return
o J

Figure 5. Converter menu

On this menu, you can select:

1

ONOoOYOL AW

OPTIONS
Shows the Options Menu.

For details, see [“Options menu” on page 15/

CONVERT PROGRAM
Shows panels that allow you to submit a conversion job for one or more
COBOL source programs.

For details, see [“Submitting the conversion job under MVS” on page 27 or
[“Running the conversion job under VM” on page 32.|

PROGRAM/FILE
FILE/PROGRAM
COPY/PROGRAM
PROGRAM/COPY
CALL/PROGRAM
PROGRAM/CALL
Generates a report of program conversion statistics.

For details, see |[Chapter 5, “Conversion reports and the conversion log,” on|

|Eage 49.|

CONVERSION LOG

Shows a panel that allows you to:

* Browse a summary of program conversion statistics
* Update manual conversion statistics

For details, see ["Using the conversion log” on page 57|

ERASE LOG
Shows a panel that allows you to delete all program conversion statistics.

For details, see [“Erasing the conversion log” on page 58|

Chapter 2. Getting started 13

Getting started
LCP Development Aid menu
The LCP Development Aid Menu contains options for customizing CCCA.
If you use CCCA as supplied, you do not need to use this menu.

To view the LCP Development Aid Menu (shown in , select option 2 from
the Master Menu.

1 RESERVED WORDS - Update COBOL Reserved Word data set
2 COMPILE LCP - Compile LCP source

3 DELETE/DEBUG LCP - Delete LCP or activate/deactivate debugging for an LCP

4 LCP DIRECTORY - Generate a directory of the LCP Tibrary
5 MESSAGES - Update Message file
6 OPTIONS - Set environment and conversion options

7 CONVERT PROGRAM - Convert COBOL source programs

\\PFl Help PF3 Exit PF4 Return

Figure 6. LCP Development Aid menu

On this menu, you can select:

1 RESERVED WORDS
Shows a panel that allows you to browse and update the COBOL Reserved
Word data set.

For details, see [“Updating the COBOL reserved word Data Set” on page 66)

2 COMPILE LCP
Shows a panel that allows you to submit a compile job for one or more LCP
source members.

For details, see [“Compiling LCPs under MVS” on page 68| or [“Compiling LCPs|
funder VM” on page 70

3 DELETE/DEBUG LCP
Shows a panel that allows you to:
* Delete LCPs from the LCP library
* Activate or deactivate debugging for each LCP

For details, see [“Deleting LCPs and activating /deactivating debugging fo
CPs” on page 71

4 LCP DIRECTORY
Generates a directory of the LCP library.

For details, see [“Generating a directory of the LCP library” on page 72

5 MESSAGES
Shows a panel that allows you to browse, add, update, or delete CCCA
messages.

14 ccca

Getting started

For details, see [“Updating the message file” on page 73|

6 OPTIONS
Shows the Options Menu.

For details, see [“Options menu.”

7 CONVERT PROGRAM
Shows a panel that allows you to submit a conversion job for one or more
COBOL source programs.

For details, see [“Submitting the conversion job under MVS” on page 27| or
[“‘Running the conversion job under VM” on page 32|

Options menu

Before converting COBOL programs, you must specify the options you want to
use. You can select the Options Menu in several ways:

* From the Master Menu, select option O

* From the Converter Menu, select option 1

¢ From the LCP Development Aid Menu, select option 6

shows the Options Menu.

Option ===>
1 ENVIRONMENT - Set environment options
2 LANGUAGE - Set Tanguage level
3 CONVERSION - Set conversion options 1
4 CONVERSION - Set conversion options 2

PF1 Help PF3 Exit PF4 Return

Figure 7. Options menu

On this menu, you can select:

ENVIRONMENT
Shows the Environment Options panel, where you specify:
* CCCA conversion and report job details
* High level qualifiers for CCCA VSAM files

For details, see [“Setting environment options (MVS only)” on page 8

LANGUAGE
Shows the Language Level panel, where you specify:
* Source language level CCCA converts from
* Target language level CCCA converts to

For details, see [“Setting source and target language levels” on page 17

Chapter 2. Getting started 15

Getting started

CONVERSION
Shows the Conversion Options panels, where you specify the output that
CCCA generates.

For details, see [’Setting conversion options” on page 19.|

16 ccca

Chapter 3. Converting COBOL programs

This chapter describes the procedure for converting COBOL programs:
1. Setting source and target language levels

2. Setting conversion options

3. Submitting the conversion job

4. Reading the Diagnostic listing

Setting source and target language levels

CCCA converts programs from a source COBOL language level to a target COBOL
language level.

To set the source and target language levels:

1. Go to the Language Level panel (O.2), shown in

Command

Source language level ===> 3

Target language Tevel ===> 4

1. DOS/VS COBOL LANGLVL(1)

2. DOS/VS COBOL LANGLVL(2)

3. 0S/VS COBOL LANGLVL(1)

4. 0S/VS COBOL LANGLVL(2)

5. VS COBOL II Release 1.0 1.1 2.0, or
any COBOL with the CMPR2 option

6. VS COBOL IT NOCMPR2 Release 3.0 3.1

7. VS COBOL II NOCMPR2 Release 4.0

8. COBOL/370 NOCMPR2

9. COBOL for VSE/ESA NOCMPR2

. COBOL for MVS & VM NOCMPR2

. COBOL for 0S/390 & VM NOCMPR2

. Enterprise COBOL (prior to Version 5)

ol

VS COBOL II

COBOL for VSE/ESA

IBM COBOL

Enterprise COBOL for z/0S & 05/390
Enterprise COBOL V5

G Bs WN =

\\PFl Help PF3 Exit PF4 Return

Enter Save options

Figure 8. Language LEVEL panel

2. Update the panel options:

Source language level
The language level of the program you are converting:

1

2
3
4
5

© Copyright IBM Corp. 1982, 2013

DOS/VS COBOL—LANGLVL(1) (COBOL 68 Standard)
DOS/VS COBOL—LANGLVL(2) (COBOL 74 Standard)
0S/VS COBOL—LANGLVL(1) (COBOL 68 Standard)
0S/VS COBOL—LANGLVL(2) (COBOL 74 Standard)

VS COBOL II (COBOL 74 Standard) Release 1.0, Release 1.1, or
Release 2.0 (or any COBOL with the CMPR2 option)

VS COBOL II—NOCMPR2 (COBOL 85 Standard) Release 3.0,
Release 3.1, or Release 3.2

17

Converting

7
8
9
10
11
12

VS COBOL II—NOCMPR2 (COBOL 85 Standard) Release 4.0
COBOL/370 NOCMPR2 (COBOL 85 Standard)

COBOL for VSE/ESA NOCMPR2 (COBOL 85 Standard)
COBOL for MVS & VM NOCMPR2 (COBOL 85 Standard)
COBOL for 0O5/390 & VM NOCMPR2 (COBOL 85 Standard)
Enterprise COBOL (prior to Version 5)

Default is 3.

Target language level
The language level (COBOL 85 Standard) you want the program converted

to:
1
2
3

4
5

VS COBOL II—NOCMPR2 Release 4
COBOL for VSE/ESA NOCMPR2 Release 1

IBM COBOL (COBOL for MVS & VM NOCMPR2 Release 2, and
COBOL for OS/390 VM NOCMPR2 Version 2 Release 2)

Enterprise COBOL for z/OS and OS/390 Version 3 Release 1
Enterprise COBOL V5

Default is 5.

Note: If you select target language level 2, 3, or 4, you can also select the
DATE FORMAT conversion option (option 8 on the Conversion Options
Panel 2—see [Figure 10 on page 23).

3. Press Enter to save the options.

shows the valid combinations of source and target language levels.

Table 3. Valid combinations of source and target language levels

Source Language Level
Target
Language
Level 1 2 3 4 5 6 7 8 9 10 11 12
10 vl | | e | e |
28 ol e e e e e | e | A
38 il v | e || e | e |
48 vl e | e | | e | A
58 vl vl ||| ||| | A
Note:
1. Does not perform the DATE FORMAT conversion.
2. Target language level supports the DATE FORMAT clause.
3. Source and target language levels are the same. For the types of conversion that CCCA
performs, see|“When the source and target language levels are the same.”|

When the source and target language levels are the same

Even if you set the target language level to the same as the source language level,
CCCA may still perform some conversion, depending on the conversion options
you have selected:

18 ccca

Converting

DATE FORMAT conversion option

If your program has been written using a level of COBOL that supports the DATE
FORMAT clause but the program source does not include DATE FORMAT clauses,
you can use CCCA to simply perform the DATE FORMAT conversion. This applies
to the following levels of COBOL:

* COBOL for VSE/ESA

» IBM COBOL

* Enterprise COBOL (prior to version 5 levels)

In this case, you specify the same level of COBOL for both the source and target
languages and select the DATE FORMAT conversion option.

For full details, see|Chapter 4, “DATE FORMAT Conversion Option,” on page 39|

Remove obsolete elements conversion option: You can use CCCA to simply
remove language elements that have become obsolete with the COBOL 85
Standard.

In this case, you specify the same level of COBOL for both the source and target
languages and select the Remove obsolete elements conversion option.

For details, see [Figure 10 on page 23

Setting conversion options

Conversion options determine the output generated by conversion jobs.

To set the conversion options:
1. Go to the Conversion Options panel 1 (0.3), shown in .

7 .] N\
—————————————————————————— CCCA Conversion Options 1 =—-=---memmmmmmmmmmmmme o
Command ===>

Lines per report page ===> 60 01 to 99

VSE system date format. ===> MM/DD/YY or DD/MM/YY
Resequence source Tines ===> N Y/N

Sequence number increment . . . ===> 0010 0001 to 9999
Reserved word suffix. ===> 74

Generate new program. ===>Y Y/N

Generate new copy members . . . ===>Y Y/N

Replace like-named copy members ===> N Y/N

Print old source lines. ===>Y Y/N

Print copy members. ===> Y Y/N

Print diagnostics of level >= . ===> 00 00 to 99
Report heading. ===> SAMPLE RUN

Generate tokenization listing . ===> N Y/N

PF1 Help PF3 Exit PF4 Return Enter Save options

Figure 9. Conversion Options panel 1

2. Update the panel options:

Lines per report page
The number of lines per page on the Diagnostic listing and conversion
reports.

Chapter 3. Converting COBOL programs 19

Converting

20 ccca

Must be in the range 01 to 99.
Default is 60.

VSE system date format

(For converting DOS/VS COBOL only.)

The date format used by the VSE system on which the old program ran:
MM/DD/YY or DD/MM/YY.

CCCA uses this date format to convert the CURRENT-DATE and
WHEN-COMPILED special registers.

Note: This entry field only appears if the source language level on the
Language Level panel is 1 or 2 (see [Figure 8 on page 17).

Resequence source lines

Either:

Y CCCA resequences line numbers in columns 1 through 6 of the new
source program and new source copy members, according to the
Sequence number increment option (see below).

N CCCA does not resequence line numbers.

Default is N.

Sequence number increment

(Only has an effect if the Resequence source lines option is set to Y.)
Increment for resequenced line numbers.

Must be in the range 0001 to 9999.

Default is 0010.

Reserved word suffix

If the program you are converting contains user-defined words that are
reserved words in the target language, CCCA appends this suffix to the
user-defined words. (If left unchanged, these words would receive compiler
errors from the target language compiler.)

Must be a two-digit number.

Default suffix is 74.

Generate new program

Either:
Y CCCA generates a new source program.

CCCA puts the new source program in the:

* (MVS only) Output source—Program library specified on the
Conversion Selection panel (see [Figure 12 on page 28).

* (VM only) Output Source—Program file name specified on the
Conversion Selection panel (see [Figure 15 on page 32).

Note: If the Generate new program option is set to Y, then CCCA
generates new source members regardless of whether there were
any changes applied.

N CCCA does not generate a new source program.

Default is Y.

Converting

Note: CCCA generates a Diagnostic listing whether or not it generates a
new source program.

Generate new copy members

Either:
Y

N

CCCA generates new source for copy members called by the source

program.

CCCA puts the new source copy members in the:

* (MVS only) Output source—Copy library specified on the
Conversion Selection panel (see [Figure 12 on page 28).

* (VM only) Output source—Copy library (MACLIB) specified on
the Conversion Selection panel (see [Figure 15 on page 32).

If the copy member already exists, CCCA does not replace it, unless
the Replace like-named copy members option is set to Y (see
below).

CCCA does not issue any message or warning if it does not replace

a copy member.

Note: If the Generate new copy members option is set to Y, then
CCCA generates new source members regardless of whether there
were any changes applied.

CCCA does not generate new source copy members.

Default is Y.

Replace Tike-named copy members
(Only has an effect if the Generate new copy members option is set to Y.)

If the new source copy member already exists in the output copy library:

Y
N

CCCA replaces it.
CCCA does not replace it.

Default is N.

Print old source lines

Either:
Y

Old source lines appear in the Diagnostic listing immediately before
the converted or flagged line, with *OLD** in place of the sequence
number.

For example:

000182
000183

*QLD**

OTHERWISE
ELSE

ABJ6021 00 OTHERWISE REPLACED BY ELSE

0LD# usually indicates a change has been made, or a manual
change should be made, to this line. Sometimes, however, *0LD*x
appears on a line because there are added or deleted language
elements related to that line.

For example, CCCA flags the WORKING-STORAGE SECTION header with
*0LD** because the related line 77 LCP-FILE-STATUS-01 PIC XX. is
inserted immediately after.

Chapter 3. Converting COBOL programs 21

Converting

22 CCcA

N Old source lines do not appear in the Diagnostic listing.
Default is Y.

Print copy members

Either:

Y CCCA prints copy members (specified in COPY statements) in the
Diagnostic listing.

N CCCA does not print copy members in the Diagnostic listing.

Default is Y.

Print diagnostics of level >=
CCCA prints diagnostics of severity greater than or equal to this value.

Must be in the range 00 to 99.

Default is 00 (CCCA prints all diagnostics).
CCCA issues a diagnostic of severity level:
00 when it converts a language element.

04 when it converts a language element, but the converted language
element may require additional, manual conversion. The new
source program that contains this converted language element may
compile and run successfully, but you should still manually inspect
the converted code.

08 when a language element is encountered that either needs to be, or
may need to be, manually converted.

Report heading
The heading that appears at the top of each page of the Diagnostic listing
and conversion reports.

Maximum length is 25 characters.
Default is SAMPLE RUN.

Generate tokenization listing

Either:

Y CCCA generates a tokenization listing (see [“Tokenization” on page|
238).

N CCCA does not generate a tokenization listing.

Default is N.

. Press Enter to save the options.

. Go to the Conversion Options panel 2 (0.4), shown in|Figure 10 on page 23

Converting

4 . . N
————————————————————————— CCCA Conversion Options 2 =----=---mmmmmmmmmmmem oo
Command ===>
Option

1. Check procedure names ===>Y Y/N
2. Flag Report Writer statements ===>Y Y/N
3. Remove obsolete elements. ===>N Y/N
4. Negate implicit EXIT PROGRAM. ===> N Y/N
5. Generate END PROGRAM header ===> N Y/N
6. Compile after converting. ===>Y Y/N
7. Flag manual changes in new source program . . ===>Y Y/N
8. Add DATE FORMAT clause to date fields ===>Y Y/N
9. Remove VALUE clauses in File/Linkage Sections ===>Y Y/N
10. Flag FILE-STATUS conditional statements . . . ===>Y Y/N
11. Flag BLL cell arithmetic. ===>Y Y/N
12. BLL cell conversion method. ===>B A/B
13. Search source for literal delimiter ===>Y Y/N
14. Literal delimiter (QUOTE or APOST). ===> A Q/A
15, o o e e e e e e e e e e e e e e ===> N Y/N
Note: Option numbers appear on the Program/File report

\FFI Help PF3 Exit F4 Return ENTER Save options

Figure 10. Conversion Options panel 2

5. Update the panel options:

Check procedure names
(For converting DOS/VS COBOL or OS/VS COBOL programs only.)

Y CCCA flags the following language elements in the Diagnostic
listing:
* CALL..USING statements that specify a procedure name in the
USING option.
» USE FOR DEBUGGING declaratives that specify a name that is
not a procedure name.
N CCCA does not flag these language elements.

Default is Y.
Note: You must convert these language elements. Flagging is optional for
performance reasons; setting the option to N reduces conversion time.

Flag Report Writer statements
(For converting DOS/VS COBOL or OS/VS COBOL programs only.)

Either:
Y CCCA flags Report Writer statements in the Diagnostic listing.
N CCCA does not flag Report Writer statements.

Default is Y.

Remove obsolete elements
Either:

Y CCCA removes language elements that have become obsolete with
the COBOL 85 Standard.

N CCCA does not remove obsolete elements.

Default is Y.

Chapter 3. Converting COBOL programs 23

Converting

24

Note: These obsolete elements will not be supported in the next COBOL
standard. It is therefore highly recommended that any such elements are
removed (option Y).

Negate implicit EXIT PROGRAM
(For converting COBOL 68 Standard and COBOL 74 Standard programs
only—see [Source language level})

Either:

Y If the last physical statement in the program is not EXIT
PROGRAM, STOP RUN, or GOBACK, CCCA adds to the end of
the program a section that includes a CALL to an abend module.

N CCCA does not add this section.
Default is Y.

Generate END PROGRAM header
Either:

Y CCCA adds an END PROGRAM header to the end of the new
source program.

N CCCA does not add an END PROGRAM header.
Default is N.

Compile after converting

Either:
Y After conversion, the new source is compiled by the target
language compiler.
Note: The new source is not compiled if the program conversion
receives a return code of 08 or higher.
The return code of the compile appears in the Program/File report.
N The new source program is not compiled.

Default is Y.

Flag manual changes in new source programs
Either:

Y CCCA inserts a flagging line in the new source program before any
line with diagnostic level 08 or higher, indicating that this line
requires manual conversion.

The new source program will not compile unless you remove this
flagging line. This ensures that you do not overlook any lines with
this level of diagnostic.

If you want to use this option, but there are some diagnostics of
level 08 that you don’t want flagged, change the severity level of
these diagnostics using the Messages panel. See [“Updating the

[message file” on page 73]

N CCCA does not insert flagging lines.
Default is N.

Add DATE FORMAT clause to date fields
Either:

Y CCCA adds a DATE FORMAT clause to the data description entry

CCCA

Converting

of each data item that has been identified as being used to contain
a date. (The names of these data items are specified in the date
identification file—see [Chapter 4, “DATE FORMAT Conversion|
[Option,” on page 39|for a full description.)

Note:
a. You can only select this option if the target language level is set
to 2, 3, or 4—see [“Setting source and target language levels” on|

b. You enter the name of the date identification file on the
Conversion Selection panel (MVS)—see [Figure 12 on page 28 or
the Conversion Selection panel (VM)—see [Figure 15 on page 32}

N CCCA does not add DATE FORMAT clauses.

Default is N.

Remove VALUE clauses in File/Linkage Sections
(For converting DOS/VS COBOL or OS/VS COBOL programs only.)

Either:

Y CCCA removes any VALUE clauses from data items (which are not
level 88) in either the File or Linkage sections of the program.
N CCCA does not remove VALUE clauses.

Default is Y.

Flag FILE-STATUS conditional statements
(For converting COBOL 68 Standard and COBOL 74 Standard programs
only—see [Source language levell)

Either:

Y CCCA flags all conditional statements that check a FILE STATUS
variable (IF, PERFORM... UNTIL..., SEARCH... WHEN...).

N CCCA does not flag conditional statements that check a FILE

STATUS variable.

Default is Y.

Flag BLL cell arithmetic
(For converting CICS programs written in DOS/VS COBOL or OS/VS
COBOL only.)

Either:

Y CCCA flags any statements where arithmetic is being performed on
a CICS BLL cell.

N CCCA does not flag statements where arithmetic is being

performed on a CICS BLL cell.

Default is Y.

BLL cell conversion method
(For converting CICS programs written in DOS/VS COBOL or OS/VS
COBOL only.)

In order to identify the BLL cells in the program, CCCA invokes the OS/VS
COBOL compiler to compile sections of the source program.

Chapter 3. Converting COBOL programs 25

Converting

26 CCCA

Either:
A
B

CCCA compiles the Linkage section of the source program only.

CCCA compiles the Working Storage and the Linkage sections of
the source program.

Default is A.

Note: Normally, it is sufficient (and fastest) to use option A. However, if
the compile fails due to there being references in the Linkage section to the
Working Storage section, then you should resubmit the conversion using
option B.

Search source for literal delimiter

Either:
Y

CCCA uses the following procedure to determine the value of the
literal delimiter used in the program:

a.

CCCA scans the CBL cards of the source program for the
QUOQOTE or APOST compiler options. If a CBL card is found that
specifies one of these compiler options, CCCA uses that value
as the delimiter. (If both QUOTE and APOST are specified,
CCCA uses the last value.)

If there are no CBL cards, or neither the QUOTE nor APOST
compiler option is specified, CCCA scans the source and copy
code until it finds a quote or an apostrophe that is:

* Not in a comment line

* Not in a comment paragraph
* Not in a NOTE statement (DOS/VS and OS/VS COBOL only)

and, if found, uses that value as the delimiter.

If after scanning the source and copy code, CCCA has not
determined a value for the literal delimiter, CCCA will use the
value specified for the option Literal delimiter (QUOTE or
APOST)—see following description.

CCCA does not search for the literal delimiter and uses the value
specified for the option Literal delimiter (QUOTE or APOST)—see
following description.

Default is Y.

Literal delimiter (QUOTE or APOST)
CCCA only uses the value of the literal delimiter specified here when one
of these conditions is true:

* The option Search source for literal delimiter is set to N

* The option Search source for literal delimiter is set to Y but, after
searching the source and copy code, CCCA cannot find a value for the
delimiter

Either:

Q
A

Indicates a literal delimiter of a quote (")

Indicates a literal delimiter of a apostrophe (')

Default is Q.

6. Press Enter to save the options.

Converting

Submitting the conversion job under MVS

Use the Conversion panels to submit a batch job to convert one or more programs.

To submit a conversion job:

1. Go to panel 1.2 to display the Conversion Job Statement Information panel,

shown in

Command ===>

Job statement information: (Verify before proceeding)
===> //VCATRCAX JOB (9999,040,090,ST3),'CCCA',
===> // NOTIFY=VCATRCA,TIME=5,
===> // REGION=4096K,USER=VCATRCA,MSGCLASS=V,CLASS=C
===> /*JOBPARM FORMS=SP1

SYSOUT class ===> =*

PF1 Help PF3 Exit PF4 Return ENTER Proceed

Figure 11. Conversion Job Statement Information panel (MVS)

2. If necessary, update the text in:

Job statement information
The JCL for the conversion job card.

SYSOUT class
The output class. to which you want the output of the conversion job
sent.
SYSOUT class can be:
* Any letter (A through Z)
* Any numeral (0 through 9)
* An asterisk (*)

3. Press Enter to display the Conversion Selection panel (see [Figure 12 on page]

28).

Chapter 3. Converting COBOL programs 27

Converting

28 ccca

4)] N
———————————————————————— CCCA Conversion selection --=--===-—ccmmmmmmmmmmo
Command ===>
Program source: Options:

Project . . . VCATRC2 Language level ===> * (* 1-11)
Library . . . CCCA = Y (Y N)
Type. SOURCE Slo 0 6 0 o o ===> N (Y N)
Member. . . . DLI. ===> |\ (Y N)
(Blank for member list, * for all members)
Other source file:
Data set name ===>
Copy libraries:
DDNAME ===> SYSLIB LIBRARY ===> 'CCCA.REGTEST.PIRCPY1'
===> ===> "VCATRC2.CCCA.COPYLIB'
===> ===> 'CCCA.REGTEST.PDSE'
===> ===> 'CCCA.V2R1.LEVEL2.SABJSAML'
===> ===> 'TAUTEST.CCCACPY'
===> ===>
Qutput source:
Program library ===> 'VCATRC2.CCCA.OUTSRCE'
Copy library. . ===> 'VCATRC2.CCCA.OQUTCPY'
Date identification file:
Data set namex* ===> 'VCATRC2.CCCA.MLESEED'
*If PDS without member name, then program source member names used.
\fFl Help PF3 Exit PF4 Return ENTER Build JCL)

Figure 12. Conversion Selection panel (MVS)

4. Enter values for:

Program source
If the program source that you want converted is in a sequential data set,
enter the data set name in the usual manner in the Other source file field
(Data set name).

If the program source that you want converted is in a partitioned data set,
enter the data set name and the member name in the usual manner in
either the Program source fields (Project, Library, Type, and Member) or the
Other source file field (Data set name). If you want all members of the data
set converted, enter an asterisk (*) instead of the member name. If you do
not specify a member name or an asterisk, a member list will be displayed
after you press Enter (see .

Place an “S” in front of all members in the list that you want converted.

. N
Functions Help
MEMBER LIST VCATRCA.OLDVS.PMR Row 00001 of 00016
Command ===> Scroll ===> PAGE
Name VV MM Created Changed Size Init Mod ID
_ BRAD1 01.56 97/03/27 98/01/12 10:01 46 8 46 VCATRC2
_ BRAD2 SELECTED 01.26 97/04/15 97/09/30 11:11 78 40 0 VCATRC2
_ BRAD3 01.02 97/04/16 97/04/16 15:25 318 316 0 VCATRCA
_ CANCEL 01.00 98/02/10 98/02/10 14:34 17 17 0 VCATRC2
_ CCCA88
_ CoBCICS1 01.01 97/11/14 97/11/19 10:30 47 42 0 VCATRC2
_ DFo100
_ KAMJ32P
_ KEE NO D.I.F 01.08 96/12/30 97/03/07 11:24 20 17 0 VCATRC2
_ KEE2 01.23 96/12/30 97/04/10 16:13 40 18 0 VCATRCA
_ KEE3 01.01 96/12/31 96/12/31 09:28 18 18 0 VCATRCA
_ KEE4 01.01 97/01/20 97/01/20 15:55 19 19 0 VCATRC2
_ KEE7 01.04 97/03/07 97/04/01 10:24 14 12 0 VCATRC2
_ LCPTEST
_ P05812PG 01.01 97/11/21 97/11/21 14:09 2143 2143 0 VCATRC2
_ W64582
End
- J

Figure 13. Conversion Member List panel (MVS)

Converting

Note: If you have selected the DATE FORMAT conversion option (option 8
on the Conversion Options panel 2—see [Figure 10 on page 23), and you
have not specified a specific member for the date identification file on the
Conversion Selection panel, the message “NO_D.LF” appears against any
member that you select if that member name does not exist in the date
identification file data set.

Options
Most options for the conversion are specified in the option panels. Three
however can be set on this panel:

Language level
Overrides—for this conversion job only—the Source language level
specified on the Language Level panel. For a list of source language
level values, see [’Setting source and target language levels” on page 17)

If you specify an asterisk (), CCCA uses the value specified in the
Language Level panel.

CICS
Either:
Y The program you are submitting for conversion contains EXEC
CICS commands.
N The program does not contain EXEC CICS commands.
SQL
Either:
Y The program you are submitting for conversion contains SQL
statements in the Linkage Section.
N The program does not contain SQL statements in the Linkage
Section.
DLI
Either:
Y The program you are submitting for conversion contains EXEC
DLI statements.
N The program does not contain EXEC DLI statements.

Copy libraries
(Only required if the program you are converting contains COPY
statements.)
The copy libraries of the old source copy members:
* The copy libraries are usually accessed through ddname SYSLIB.

The COPY statement gives the member name in the library as specified
by the SYSLIB DD statement.

* The COPY statement may also indicate a specific library.
For example:

COPY MOD OF LIB1
or

COPY MOD IN LIB1

In this case, the library is accessed by specifying a ddname that defines
the data set itself.

Chapter 3. Converting COBOL programs 29

Converting

DDNAME ===>SYSLIB LIBRARY ===>'CCCA.INCLUDE.LIB1'

DDNAME ===> LIBRARY ===>'CCCA.INCLUDE.LIB2'

DDNAME ===> LIBRARY ===>'CCCA.INCLUDE.LIB3"

DDNAME ===>LIB1 LIBRARY ===>'CCCA.SPECIAL.INCLUDE.LIB1"'

DDNAME ===> LIBRARY ===>'CCCA.SPECIAL.INCLUDE.LIB2'
Concatenation

Concatenation of libraries is possible for any ddname that you specify.
The normal MVS rules for concatenation of libraries apply, and you
must ensure that the data set with the largest block size is listed first.

In this case, if different modules have the same name in different
libraries, the module copied is the first encountered in the sequence of
the libraries.

As the above example shows, you can concatenate up to six libraries
under ddname SYSLIB or any other ddname.

Output source (Program library)
(You can specify this only if the Generate new program field on
Conversion Options panel 1 is set to Y.)

The output library that you specify should be the same organization as the
input library.

CCCA puts the new source program into this library.

If the data set is partitioned, the member name of the new source program
will be the same as the member name of the old source program in the
input library.

If a member with this name already exists in the output library, CCCA
replaces it.

CCCA checks that the library you specify is:

¢ Avalid library name and that it exists

* Not the same as the input source library

* Not the same as any of the input copy libraries
* Not the same as the output copy library

Note: You must enter the name of a library, even if the Generate new
program field is set to N.

Output source (Copy library)
(You can specify this only if the Generate new copy members field on
Conversion Options panel 1 is set to Y.)

CCCA puts new source for copy members called by the source program
into this library. The new copy member will have the same name as the old
copy member.

If a member with this name already exists in the output copy library, it is
not replaced unless the Replace like-named copy members field on
Conversion Options panel 1 is set to Y.

CCCA checks that the library you specify is:

* A valid library name and that it exists

* A partitioned data set

* Not the same as any of the input copy libraries
* Not the same as the input source library

* Not the same as the output source library

You can specify only one output copy library.

30 ccca

Converting

Date identification file

If you have selected the DATE FORMAT conversion option (option 8 on the
Conversion Options panel 2—see |Figure 10 on page 23), an entry field
appears on the Conversion Selection panel into which you enter the data
set name for the date identification file.

Note:

a. If you specify a PDS without a member name, CCCA uses the same
member name as for the program source.

b. If the input source is a sequential file, you must specify a member for
the date identification file.

c. If you specify a PDS and a member name, CCCA searches that member
for entries that match the program name of the source program. For a
detailed description, refer to[“Date Identification file” on page 42|

d. If you specify a sequential file, CCCA searches the file for entries that
match the name of the source program. For a detailed description, refer

to [“Date Identification file” on page 42

5. Press Enter.

ISPF generates the JCL for the conversion and then displays the Conversion
Submission panel (see Figure 14).

Command ===>

Instructions:
Press ENTER to continue generating JCL.
Press PF3 to submit job and exit
Press PF4 to submit job and return
Press PF12 to exit without submitting job
Enter C command to exit without submitting job.

1 member(s) built for conversion.
1 selection(s) ignored because no date identification member found

Job statement information:
//VCATRCAG JOB (9999,040,090,ST3),'CCCA',
// NOTIFY=VCATRCA,TIME=5,
// REGION=4096K,USER=VCATRCA,MSGCLASS=V,CLASS=C
/*JOBPARM FORMS=SP2

PF1 Help PF3 Submit Job PF4 Submit job PF12 Cancel ENTER Generate JCL
and exit and return for member

-

Figure 14. Conversion Submission panel (MVS)

The Conversion Submission panel shows how many members have been
selected (and also how many selections have not been successful) and
redisplays the Job card parameters for information only. This panel can no
longer be overtyped, since the Job statement has already been generated.
To select additional programs to be converted, press Enter,
To cancel the submission of the job, type C on the command line and press
Enter.

6. Press either PF3 or PF4.
ISPF submits the generated JCL for execution.
The message JOB xxxxxc SUBMITTED appears once for each member that you

selected for conversion (where xxxxxc is the specified job name). The final
message is followed by three asterisks (**%).

Chapter 3. Converting COBOL programs

Converting

You may press Enter or any other interrupt key to return to the Converter
panel.

Running the conversion job under VM

Use the Conversion Selection panel to convert one or more programs.

To run a conversion job:
1. Go to panel 1.2 to display the Conversion Selection panel, shown in

4]] N\
———————————————————————— CCCA Conversion selection =-=--=---mmmmmmmmmmmmmeeem
Command ===>
Program source: Options:

Project . . . ===> CCCA Language level ===> * (*» 1-11)
Library . . . ===> REGTEST CICS ===>Y (Y N)
Type. ===> COBOL
Member ===> (Blank for member list, * for all members)
CMS file
File ID ===> If not Tinked, specify:
Owner's ID ===> Device addr. ===> Link access mode ===>
Read password ===> Update password ===>

Copy libraries (MACLIBs):

DDNAME ===> SYSLIB LIBRARY > CCCACOPY MACLIB J
> CCCACPY2 MACLIB J
>CCCACPY3 MACLIB J

>CCCAPRIV MACLIB A

vV Vv

PRIVLIB

\
\

nm o omwounon

nm o o on

n n n u n

v

monmomwounonon
nm o omwouonon
n n n u nn
v

v

Output source:
Program file name
Copy library (MACLIB)

===> = QUTSRC A

===> CCCAOCPY MACLIB J
Date identification file:

===> PJRMO1 MLESEED J

\\PFl Help PF3 Exit PF4 Return

Figure 15. Conversion Selection panel (VM)

2. Enter values for:

Program source
If the program source that you want converted is within an ISPF
partitioned data set, enter the data set name and the member name in the
Project, Library, Type, and Member fields.

If the program source that you want converted is within a MACLIB, enter
the MACLIB file name in File ID and the member name in the Member
field.

If you want all members of the MACLIB or ISPF partitioned data set
converted, enter an asterisk (*) instead of the member name. If you do not
specify a member name or an asterisk, CCCA displays the Conversion
Member Selection panel after you press Enter (see IFigure 16 on page 33|).

32 ccca

Converting

4 N

Command ===>

Select the member(s) to be converted and press Enter
Press PF3 to initiate conversion

NB: Members marked with NO D.I.F cannot be selected for conversion

NAME SELECT

Figure 16. Conversion Member Selection panel (VM)

Place an “S” in front of all members in the list that you want converted.

Place a “C” in front of any selected member in the list to cancel the
selection.

Note: If you have selected the DATE FORMAT conversion option (option 8
on the Conversion Options panel 2—see [Figure 10 on page 23), and you
have not specified a specific member for the date identification file on the
Conversion Selection panel, the message “NO_D.LF” appears against any
member in the member selection list that does not have a corresponding
member in the date identification file data set. You cannot select these
members for conversion.

CMS file-File ID
If the program source that you want converted is a simple CMS file, enter
the file details (fn ft fm).

Linkage fields
If you are not already linked to the minidisk where the file resides enter
the appropriate details in Owner's ID, Device addr, and Link access mode.

Passwords
If required, enter the appropriate passwords in the Read password and
Update password fields.

Options
Most options for the conversion are specified in the option panels. Two
however can be set on this panel:

Language level
Overrides—for this conversion job only—the Source language level
specified on the Language Level panel. For a list of source language
level values, see |[“Setting source and target language levels” on page 17

If you specify an asterisk (*), CCCA uses the value specified in the
Language Level panel.

CICS
Either:
Y The program you are submitting for conversion contains EXEC
CICS commands.
N The program does not contain EXEC CICS commands.

Copy libraries (MACLIBs)
(Only required if the program you are converting contains COPY
statements.)

The copy libraries containing the old source copy members:
¢ The copy libraries are usually accessed through ddname SYSLIB.

Chapter 3. Converting COBOL programs 33

Converting

34 ccca

The COPY statement gives the member name in the library as specified
by the SYSLIB DD statement.

* The COPY statement may also indicate a specific library.
For example:

COPY MOD OF LIB1

or

COPY MOD 1IN LIB1

In this case, the library is accessed by specifying a ddname that defines
the data set itself.

DDNAME ===>SYSLIB LIBRARY ===>'COBCOPY1 MACLIB A'
DDNAME ===> LIBRARY ===>'COBCOPY2 MACLIB A'
DDNAME ===> LIBRARY ===>'COBCOPY3 MACLIB C'
DDNAME ===>L1B1 LIBRARY ===>'SPCLCOPY MACLIB D'
DDNAME ===> LIBRARY ===>'SPCLCPY2 MACLIB D'

As the above example shows, you can concatenate up to six libraries
under ddname SYSLIB or any other ddname.

Concatenation of libraries is possible for any ddname that you specify.
The normal CMS rules for concatenation of libraries apply.

Note: Each input copy library that you specify must be a MACLIB, and
have a filetype of MACLIB.

Output source-Program file name

(You can specify this only if the Generate new program field on
Conversion Options panel 1 is set to Y.)

Enter the name of the file where you want CCCA to put the new source
program.

The format of the Program File Name can be:

a. fn ft fm
b. = ft fm (the fn is taken from the input source filename or member
name)

c. fn MACLIB fm

If you specify an input file that is either a MACLIB or an ISPF PDS without
including a member name, you must use either option b or c above when
specifying the Program File Name.

Note: If the file (in option a above) or member that you specify already
exists, CCCA replaces it.

Output source-Copy library (MACLIB)

(You can specify this only if the Generate new copy members field on
Conversion Options panel 1 is set to Y.)

CCCA puts new source for copy members called by the source program
into this library. The new copy member will have the same name as the old
copy member. The copy library that you specify must be a MACLIB, and
have a filetype of MACLIB.

If a member with this name already exists in the output copy library, it is
not replaced unless the Replace like-named copy members field on
Conversion Options panel 1 is set to Y.

CCCA checks that the library you specify is:

Converting

¢ A valid library name and that it exists

+ AMACLIB

* Not the same as any of the input copy libraries
* Not the same as the input source library

* Not the same as the output source library

You can specify only one output copy library.

Date identification file
If you have selected the DATE FORMAT conversion option (option 8 on the
Conversion Options panel 2—see [Figure 10 on page 23), an entry field
appears on the Conversion Selection panel into which you enter the file
name for the date identification file.

The date identification file name can be:

a. A simple CMS file (fn ft fm)

b. A MACLIB

C. An ISPF partitioned data set, with member specified

d. An ISPF partitioned data set, with no member specified

e. A simple CMS file with the filename specified as “=" (= ft fm)

Note:

a. For options b, d, and ¢, the member name is taken from the input source
file name, or member name.

b. If you specify option a or ¢, CCCA searches that file or member for
entries that match the name of the source program. For a detailed
description, refer to [‘Date Identification file” on page 42)

3. Press Enter.

CCCA converts the member (or members) that you have selected in foreground
mode. If errors are encountered during the conversion process, CCCA displays
a message.

If you used the Conversion Member Selection panel to select one or more
members for conversion, or specified an asterisk (*) to convert all members,
CCCA displays a message indicating which member it is currently converting.

When the conversion process is complete, CCCA redisplays the Conversion
Selection panel, with a message indicating the highest return code for the
conversion.

Reading the Diagnostic listing

The conversion job generates a Diagnostic listing containing:
* Converted source code
* Diagnostic messages

You can tailor the contents of the Diagnostic listing using the following conversion
options (for details, see|“Setting conversion options” on page 19):

* Print old source lines

* Print copy members

 Print diagnostics of level >=

[Figure 17 on page 36 shows an extract from a sample Diagnostic listing.

This sample was generated with:
* Print old source lines set to Y
* Print diagnostics of level >= 0 (print all diagnostic messages)

Chapter 3. Converting COBOL programs 35

Converting

000179
000180
000181
000182
000183
000184
000185
000186
000187
000188+
000189+
000190+
000191+
000192

*QLD**

3
IF ERROR-FLAG = ZERO

MOVE "TEST CASE LCPTST@9 IS SUCCESSFUL." TO OUTPUT-RECORD

WRITE OUTPUT-RECORD
OTHERWISE
ELSE

g Bd
ABJ6021 60 OTHERWISE REPLACED BY ELSE

MOVE "TEST CASE LCPTSTO9 FAILED." TO OUTPUT-RECORD

WRITE OUTPUT-RECORD

COPY CLOSEA.
CLOSE IN-FILEL.
CLOSE IN-FILE2.
CLOSE OUT-FILE.
CLOSE PRINT-FILE.
STOP RUN.

Figure 17. Extract from a diagnostic listing

36 ccca

The columns of this report are described below.

Line ID and copy book indicator.

CCCA assigns a sequential line ID to each converted and each old source
line appearing in the Diagnostic listing. Each diagnostic message appearing
at the end of the listing uses the line ID to reference the line to which it
refers.

The copy book indicator (“+”) appears when the line is from a copy book.
Converted program sequence numbers or old source line indicator.

For converted program source lines, if the Resequence source lines field
on Conversion Options panel 1 was set to:

Y this column contains the new sequence numbers

N this column contains the contents of columns 1 through 6 from the
old source lines

For old program source lines, this column contains *QLD*x*.

If column [contains *0LD*, this is the old source line. (Old source lines
appear only if the Print old source lines field on Conversion Options
panel 1 was set to Y.)

If column [does not contain *0LD+%, this is the converted program
source line.

Diagnostic message identifier, in the format ABJnnnn (where nnnn is a
4-digit number).

Diagnostic severity level:

00 The language element has been converted into its equivalent in the
target language.

04 The language element has been converted, but you should inspect
the change.

08 Either you must, or you may have to, make a change to this

language element, if you want the program to behave in the same
way it did before conversion.

Diagnostic message text.

Each diagnostic message for the converted program appears twice in the
Diagnostic listing:

* Alongside the source line to which it applies

Converting

* At the end of the Diagnostic listing, alongside the Line ID to which it applies

Conversion return codes

CCCA issues a return code for each converted program. This return code appears
in the job log alongside the program conversion step:

00

01

04

08

16
21
22
23

CCCA did not issue any diagnostics. No changes were made to the
program and no language elements were flagged for a manual change.

CCCA issued diagnostics of severity 00, but there were no diagnostics of
severity greater than 00.

CCCA issued diagnostics of severity 04 and lower, but there were no
diagnostics of severity greater than 04.

CCCA issued diagnostics of severity 08 and lower, but there were no
diagnostics of severity greater than 08.

Required copy members were missing.
Abend occurred during conversion phase 1.
Abend occurred during conversion phase 2.

Abend occurred during conversion phase 3.

Chapter 3. Converting COBOL programs 37

Converting

38 ccca

Chapter 4. DATE FORMAT Conversion Option

This chapter describes:

Millennium language extensions (MLE) and date fields

MLE terms

The DATE FORMAT clause

What you need to supply to CCCA for the DATE FORMAT conversion option
Selecting the DATE FORMAT conversion option

How the DATE FORMAT conversion option works

ook wn~

The DATE FORMAT conversion option is one of several options within CCCA that
you can select. By selecting this option, CCCA will perform a DATE FORMAT
conversion in addition to any other type of conversion that it may carry out
(according to the source and target language levels that you have specified).

The DATE FORMAT conversion option adds a DATE FORMAT clause to selected
data description entries to identify those entries as date fields.

The DATE FORMAT clause is part of the millennium language extensions.

Millennium Language Extensions (MLE) and Date Fields

Many applications use 2 digits rather than 4 digits to represent the year in date
fields, and assume that these values represent years from 1900 to 1999. This
compact date format works well for the 1900s, but it does not work for the year
2000 and beyond because these applications interpret “00” as 1900 rather than
2000, producing incorrect results.

The millennium language extensions are designed to allow applications that use
2-digit years to continue performing correctly in the year 2000 and beyond, with
minimal modification to existing code. This is achieved using a technique known
as windowing, which removes the assumption that all 2-digit year fields represent
years from 1900 to 1999. Instead, windowing enables 2-digit year fields to
represent years within any 100-year range, known as a century window.

For example, if a 2-digit year field contains the value 15, many applications would
interpret the year as 1915. However, with a century window of 1960-2059, the year
would be interpreted as 2015.

The millennium language extensions provide support for the most common
operations on date fields: comparisons, moving and storing, incrementing and
decrementing. This support is limited to date fields of certain formats; for details,
see ['DATE FORMAT Clause” on page 40

For further information on MLE, see the IBM COBOL Millennium Extensions Guide.

Definition of terms

This book uses the following terms when referring to the millennium language
extensions.

© Copyright IBM Corp. 1982, 2013 39

DATE FORMAT

Date Field

For the purposes of CCCA, a date field is a data item whose data description entry
includes a DATE FORMAT clause.

The term date field refers to both expanded date fields and windowed date fields.

Windowed Date Field

A windowed date field is a date field that contains a windowed year. A windowed
year consists of 2 digits, representing a year within the century window.

Expanded Date Field

An expanded date field is a date field that contains an expanded year. An
expanded year consists of 4 digits.

The main use of expanded date fields is to provide correct results when these are
used in combination with windowed date fields; for example, where migration to
4-digit year dates is not complete. If all the dates in an application use 4-digit
years, there is no need to use the millennium language extensions.

Century window

A century window is a 100-year interval within which any 2-digit year is unique.
For windowed date fields, it is specified by the YEARWINDOW compiler option.

DATE FORMAT Clause

40 ccca

In order to indicate that a data item is a date field, the DATE FORMAT clause is
used in the data description entry in the Data Division.

The DATE FORMAT clause specifies the format of the date contained in the data
item.

Format

»>—DATE FORMAT YY

|—IS—| —YYX
—YYXX——
—YYXXX——
—YYXXXX—
—XYY
—XXYY——
—XXXYY——
—XXXXYY—
—YYYY——
—YYYYX——
—YYYYXX—
—YYYYXXX—
—YYYYXXXX—
—XYYYY——
—XXYYYY—
—XXXYYYY—
—XXXXYYYY—

Y
A

DATE FORMAT clause...
Specifies that the data item contains...

YY A windowed year.

DATE FORMAT

YYX A windowed year followed by 1 character.

YYXX A windowed year followed by 2 characters; for example, digits
representing a month (01-12).

YYXXX
A windowed year followed by 3 characters; for example, digits
representing a day of the year (001-365).

YYXXXX
A windowed year followed by 4 characters; for example, 2 digits
representing a month and 2 digits representing a day of the month.

XYY A windowed year preceded by 1 character.
XXYY A windowed year preceded by 2 characters.

XXXYY
A windowed year preceded by 3 characters.

XXXXYY
A windowed year preceded by 4 characters.

YYYY An expanded year.

YYYYX
An expanded year followed by 1 character.

YYYYXX
An expanded year followed by 2 characters.

YYYYXXX
An expanded year followed by 3 characters.

YYYYXXXX
An expanded year followed by 4 characters.

XYYYY
An expanded year preceded by 1 character.

XXYYYY
An expanded year preceded by 2 characters.

XXXYYYY
An expanded year preceded by 3 characters.

XXXXYYYY
An expanded year preceded by 4 characters.

Examples

77 YEAR1 PIC 99 DATE FORMAT YY.

77 DATEA PIC 9(5) DATE FORMAT YYXXX.
77 DATEB PIC 9(4) DATE FORMAT XXYY.

77 DATEC PIC 9(7) DATE FORMAT XXXYYYY.
77 DATED PIC 9(8) DATE FORMAT YYYYXXXX.

What you need to supply to CCCA

CCCA does not, itself, identify which data items within a COBOL program are
used to contain dates. Instead, CCCA requires the names (and format) of each of
these data items to be supplied as additional input. Typically, this information is
supplied by a Year 2000 tool.

The DATE FORMAT conversion option within CCCA requires:

Chapter 4. DATE FORMAT Conversion Option ~ 41

DATE FORMAT

* The COBOL source program that is to be converted

* A date identification file that identifies each data item in that COBOL source
program that is used to contain a date. The date identification file contains the
program name followed by details for each such data item:

— The line number of the data item (used only as a delimiter by CCCA)
— The format of the data item

— The name of the data item, qualified as necessary; see|’Qualification of data
fnames” on page 45|

Note: Details of data items for more than one program can be held in the same
date identification file. For more information, see

Date Identification file

42 ccca

The purpose of the date identification file is to identify which data items in the
COBOL program and copy members to be converted are used to contain dates so
that CCCA can add an appropriate DATE FORMAT clause to the corresponding
data description entries.

It is your responsibility to create the date identification file. You must use the
format as described in this document, and supply the file to CCCA.

The method used to produce the date identification file does not matter. It could
be, for example, that you choose to create the file manually, inserting the details of
data items in the program that is to be converted that you know are used to
contain dates. However, it is much more likely that you will use one of the Year
2000 tools that can generate a date identification file for you.

In either case, it is essential that you carefully check the contents of the date
identification file for completeness and accuracy before supplying the date
identification file to CCCA for the actual program conversion.

CCCA performs some syntax checking before adding a DATE FORMAT clause to a
data description entry (see|“Checking DATE FORMAT Clause syntax” on page 46).
However, CCCA cannot check which data items are used to contain dates. The
onus is therefore on you to ensure that the date identification file correctly
identifies all such data items.

Format

The information in the date identification file relates to each data item, within a
specific program, that has been identified (by some external means) as containing a
date.

The date identification file consists of 80-byte records containing data in a
free-format style. Each record may contain one or more fields. Each field within a
record is separated by one or more spaces.

Note:

1. While the date identification file is free-format, you will find it far more
readable, and therefore much easier to reference, if a formatted style is used.
(Refer to [“Examples of date identification file contents” on page 45.)

2. The date identification file can contain the Double-Byte Character Set (DBCS).

The details for each data item are “grouped” by program name, allowing the same
date identification file to be used for more than one program. The program to

DATE FORMAT

which each group of data item details relate is identified by means of the program
name preceding the group.

Format of date identification file

»»—Y < —program-name— > —'—I date entry |

A\
A

date entry:

f—Line-number YY data-name-1 |
—YYX
—YYXX——
Y YXXX—— Y _OF—data-name-2
—Y Y XXXX—
—XYY
—XXYY-
—XXXYY—
—XXXXYY—
—YYYY——
—YYYYX——
—YYYYXX—
—YYYYXXX—]
—YYYYXXXX—
—XYYYY—
—XXYYYY—
—XXXYYYY—
XXXXYYYY—

Note:

1. Line breaks are ignored (except for comments, in which case each line must have an “*” in column 1—see
[“Comment lines” on page 45).

2. Each item may start in any column and must be separated from the previous item by at least 1 space.

program-name
The name of the program to which the data item information (that follows)
applies. The program name can be a maximum of 30 characters and must be
enclosed (with no intervening spaces) in “<” and “>” symbols. For example,
<ABJIVPO1>

1ine-number
A numeric field that can be used as a reference to the line number in the source
COBOL program where the data item appears. For example, 223

Note: CCCA uses this field as a delimiter only and does not use its actual
value. You can use this field as a useful reference when checking the content of
the date identification file against the source program before you input the
date identification file to CCCA. However, even if you are not using the field
for this purpose, you must still place some numeric value (“1”, for example) in
this position.

Chapter 4. DATE FORMAT Conversion Option 43

DATE FORMAT

44 ccca

YY Specifies the data item contains a windowed year.

YYX
Specifies the data item contains a windowed year followed by 1 character.

YYXX
Specifies the data item contains a windowed year followed by 2 characters; for
example, digits representing a month (01-12).

YYXXX
Specifies the data item contains a windowed year followed by 3 characters; for
example, digits representing a day of the year (001-365).

YYXXXX
Specifies the data item contains a windowed year followed by 4 characters; for
example, 2 digits representing a month and 2 digits representing a day of the
month.

XYY
Specifies the data item contains a windowed year preceded by 1 character.

XXYY
Specifies the data item contains a windowed year preceded by 2 characters.

XXXYY
Specifies the data item contains a windowed year preceded by 3 characters.

XXXXYY
Specifies the data item contains a windowed year preceded by 4 characters.

YYYY
Specifies the data item contains an expanded year.

YYYYX
Specifies the data item contains an expanded year followed by 1 character.

YYYYXX
Specifies the data item contains an expanded year followed by 2 characters.

YYYYXXX
Specifies the data item contains an expanded year followed by 3 characters.

YYYYXXXX
Specifies the data item contains an expanded year followed by 4 characters.

XYYYY
Specifies the data item contains an expanded year preceded by 1 character.

XXYYYY
Specifies the data item contains an expanded year preceded by 2 characters.

XXXYYYY
Specifies the data item contains an expanded year preceded by 3 characters.

XXXXYYYY
Specifies the data item contains an expanded year preceded by 4 characters.

Note:

1. MLE does not provide support for any forms of date other than those
specified above.

2. MLE does not perform any special processing for any parts of dates except
for the year part. Other forms of date that have the same general form as
the explicitly supported dates will be treated in the same way. For instance,

DATE FORMAT

MLE regards year and week dates of the form YYWW as if they were year
and month dates of the form YYMM (represented by the date format YYXX).

data-name-1
The lowest-level name associated with the data item used to hold a date. For
example, DATE-1

data-name-2
A qualifier which is a higher-level name that helps to uniquely identify
data-name-1. For example, A-RECORD

Qualification of data names: The syntax for qualifying names within normal
COBOL source code allows either the word “IN” or the word “OF” to be used
between the lower-level data name and the higher-level data name. A detailed
description of qualification can be found in the IBM COBOL Language Reference for
your platform.

However, only “OF” is acceptable in the case of qualified names in the date
identification file input to CCCA.

Comment lines
Comment lines can be included in the date identification file. They are identified

"o

by having an “*” in column 1 of the record. Comment lines are ignored by CCCA.

Format of date identification file comment line

(1)
> comment-text »><
Notes:
1 “%” must be in column 1.

Examples of date identification file contents
Example 1 (Recommended formatted style)

* STUDENT FILE PRODUCED 04/16/98

<STUDPRG1>

127 YYXXXX BIRTH-DATE

157 YY ENROL-YEAR

162 YYXX GRAD-MONTH

195 YYXXXX FEE-DUE-DATE OF CUR-SEMMEST OF SUBJECT-CODE OF
COLLEGE-NUM OF STATE-CODE

<STUDPRG2>

96 YYXXXX ARREARS-DATE OF ARR-1

98 YYXXXX ARREARS-DATE OF ARR-2

100 YYXXXX ARREARS-DATE OF ARR-3

<STUDPRG3>

388 YYXXX PAID-DATE

Example 2

<VETSYSO1>

1

YYXXX

REG-DATE

1

YYXXX

NEXT-INNOC-DATE
1

YYXXX
LAST-INNOC-DATE

Chapter 4. DATE FORMAT Conversion Option 45

DATE FORMAT

* REMINDER DATE
1

YYXXX
REMIND-DATE

Example 3

<ACCT1> 1 YYXXXX LOAN-DATE 1 YY VAL-YEAR 1 YYXX DUE-MONTH 1
YYXXXX REPAY-DATE OF CUR-PERIOD <ACCT2> 1 YYXXXX ARREARS-DATE OF
ARR-1 1 YYXXXX ARREARS-DATE OF ARR-2 1 YYXXXX ARREARS-DATE OF
ARR-3 <ACCT3> 1 YYXXX PEN-DATE

Selecting the DATE FORMAT Conversion Option

To select the DATE FORMAT conversion option, specify Y for option 8 (Add DATE
FORMAT clause to date fields) on the Conversion Options 2 panel (see
lconversion options” on page 19).

When you select this option, an additional field appears on the Conversion
Selection panel (MVS)— see [Figure 12 on page 28| or the Conversion Selection
panel (VM)— see [Figure 15 on page 32| into which you enter the name of the date
identification file.

Note: You can only select the DATE FORMAT conversion option if the target
laniuaie level supports the DATE FORMAT clause. For details, see [Table 3 on

How the DATE FORMAT Conversion Option works

If you have selected the DATE FORMAT conversion option, CCCA scans the date
identification file for the name of the program being converted.

When the program name is found:

1. CCCA reads the data item details in the date identification file that follow the
program name and stores them in an internal table.

2. CCCA checks each data item in the Data Division of the program being
converted to determine if its name is in the internal table.

3. If the name is in the internal table, CCCA performs various syntax checking
(see ["Checking DATE FORMAT Clause syntax”) to determine if a DATE
FORMAT clause is allowed for the data description entry.

4. If no syntax violations are found, CCCA adds a DATE FORMAT clause using
the date format specified for that data item in the internal table.

Checking DATE FORMAT Clause syntax

46 ccca

Before adding the DATE FORMAT clause, CCCA checks that the addition of the
clause does not violate the following syntax rules.

The DATE FORMAT clause can only be specified for a data description entry
which:

* Does not already contain a DATE FORMAT clause

* Does not have a:
— BLANK WHEN ZERO clause
— JUSTIFIED clause
— SIGN clause with a SEPARATE CHARACTER phrase

e Has a level number other than 66 or 88

DATE FORMAT

* In the case of an elementary data item:
- Has a PICTURE string that contains:
- All9's
- An S followed by 9's
- 9's, A's, and X's only, and not all A's
- Has a computer storage format (USAGE clause) of DISPLAY,
COMPUTATIONAL-3, PACKED-DECIMAL, BINARY, COMPUTATIONAL, or
COMPUTATIONAL-4
— Where the length of the PICTURE clause (999999, for example) matches the
length of the corresponding format field in the date identification file
(YYXXXX, for example)
* In the case of a group data item:
— Contains a USAGE clause of DISPLAY

* Is not an external data item or part of an external data item

If any of the above syntax rules are violated, CCCA issues a diagnostic message
stating the reason the DATE FORMAT clause was not added. Otherwise, CCCA
adds the DATE FORMAT clause to the data description entry.

Note:
1. The above is not a comprehensive list of the DATE FORMAT clause syntax
rules.

2. It is possible that CCCA may add the DATE FORMAT clause where it is not
allowed. In these cases, the post-conversion compile, if specified, will identify
the error.

If you select both the DATE FORMAT conversion option and the Compile after
converting option (see [Figure 10 on page 23), CCCA compiles the converted
program with the compiler option DATEPROC(FLAG) and the installation default
value of the YEARWINDOW option.

The diagnostics in the resultant compiler listing will indicate whether manual
changes to the program are required.

Chapter 4. DATE FORMAT Conversion Option ~ 47

48 ccca

Chapter 5. Conversion reports and the conversion log

This chapter describes how to:
* Generate conversion reports
* Browse, update, and erase the conversion log

Generating conversion reports

Conversion reports list program conversion statistics.

To see the types of conversion report you can generate, go to panel 1 (the
Converter Menu, shown in [Figure 5 on page 13).

The Converter Menu contains options for generating conversion reports:

Report Lists details of... Sorted by
Program/File Converted programs, and the files they use Program name
File/Program As above (with fewer program details) File name
Copy/Program Copy members used by converted programs Copy member name
Program/Copy As above Program name

Call/Program CALL statements in converted programs
CALL subroutine
identifier or
subroutine literal

Program/Call As above Program name

Conversion reports list details only for programs converted since you last erased
the conversion log (see|“Erasing the conversion log” on page 58).

When there's nothing to report...

With the exception of the Program/File report, CCCA can only produce any of the
conversion reports that you request if there are matching records in the CCCA
Control file.

For example, if you used CCCA to convert a number of programs none of which
contained references to any file names, and you then requested CCCA to generate
a File/Program report (option 4 on the Converter Menu, see [Figure 5 on page 13),
CCCA would be unable to produce the requested report.

In this situation (when no matching records for a requested report exist in the
CCCA Control file), CCCA displays one of the following messages in the top
right-hand corner of the screen:

* Report not generated

* Nothing to Report on

|Appendix H, “Sample output,” on page 199|contains sample report listings.

The following sections describe each conversion report in detail.

© Copyright IBM Corp. 1982, 2013 49

Conversion reports

Program/File report

The Program/File report lists details of converted programs:
e Date and time the program was last converted
* Options specified for the conversion

¢ Conversion statistics

* Converted program status

* Details of files used by the program

Note: This report lists details only for programs converted since you last erased

the conversion log (see [“Erasing the conversion log” on page 58).

shows a sample Program/File report.

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE 04/15/98 17:36:40 Page 1
.......... PROGRAM -- FILE REPORT
H BHA B3 6|
¢ 13|
---COBOL-- NI S— OPTIONS----- e FILES DEFINED -------------

1 11111 MEMBER
12345 67890 12345 NAME

PGM.NAME REV PBR SUFF E V C

CNV WORD L L S

ABJIVPO1 01 213 © Q2 N YYYYY YNNNN NNNNN ABJIVPO1

ABJIVPO2 01 208 2 Q2 N YYYYY YNNNN NNNNN ABJIVPO2

OLD NEW CNV SYSTEM
ORG ORG REQ NAME

COoBOL
NAME

STATUS
DATE/TIME

compLETE B

98/04/15 16:24
COMPILE RC=00 Y
98/04/15 16:25 |iH1

MANUAL COMPLETION ¥4

/7

S S N DDPRINT PRINT-FILE
COMPLETE

98/04/15 16:25

COMPILE RC=00

98/04/15 16:26

MANUAL COMPLETION

i

S S N PRINT PRINT-OUT

Figure 18. Program/File report

The columns of this report are described below.

The name of the converted program, specified in the Identification Division
PROGRAM-ID paragraph.

appended suffixes.

DEL

The number of times you have converted the program.

The number of Language Conversion Programs (LCPs) invoked during
program conversion.

The number of user-defined words in the program to which CCCA

Literal delimiter used in the program:

A Apostrophe (')
Q Quotation mark (")

LVL

Source language level used for the conversion, as specified on the

Language Level panel (Figure 8 on page 17) or the
* (MVS only) Conversion (Selection) panel (see |Figure 12 on pagel

* (VM only) Conversion Selection panel (see [Figure 15 on page 32):
1 DOS/VS COBOL—LANGLVL(1)
2 DOS/VS COBOL—LANGLVL(2)

50 ccca

Conversion reports

3 0S/VS COBOL—LANGLVL(1)

4 0S/VS COBOL—LANGLVL(2)

5 VS COBOL II Release 1.0, Release 1.1, or Release 2.0 (or
any COBOL with the CMPR?2 option)

6 VS COBOL II—NOCMPR2 Release 3.0, Release 3.1, or
Release 3.2

7 VS COBOL II—NOCMPR2 Release 4.0

8 COBOL/370—NOCMPR2

9 COBOL for VSE/ESA—NOCMPR2

10 COBOL for MVS & VM—NOCMPR2
1 COBOL for 0OS/390 & VM—NOCMPR2
12 Enterprise COBOL (prior to Version 5)
CICS CICS processing option used for the conversion, as specified on the
* (MVS only) Conversion Selection panel (see [Figure 12 on page|

* (VM only) Conversion Selection panel (see [Figure 15 on page 32).

You should have set this option to:

Y If the program you submitted for conversion contained
EXEC CICS statements

N If the program had no EXEC CICS commands

Options CCCA used to convert the program, as specified on Conversion
Options panel 2 (Figure 10 on page 23).

For a description of these options, see|“Setting conversion options” onf

Under MVS
Member name of the program (if the old source program was in a
partitioned data set).

CCCA uses the same name for the new source member (if it is
generated).

Under VM
The fn of the program, or the member name if the old source
program was in a CMS MACLIB or ISPF partitioned data set.

CCCA uses the same name for the new source file (fi1) or source
member (if it is generated).

Status of the converted program:

NOCHANGE
The last conversion of this program received return code 00. CCCA
made no changes to the program. No manual changes to the
program are required.

COMPLETE
The last conversion of this program received return code 01. The
program has been completely converted. No manual changes to the
program are required.

WARNING
The last conversion of this program received return code 04. The
program has been converted. The program may compile and
execute successfully, but you should inspect the converted
language elements that received level 04 diagnostics.

Chapter 5. Conversion reports and the conversion log 51

Conversion reports

ERROR
The last conversion of this program received return code 08. CCCA
issued level 08 diagnostics, indicating you may need to manually
convert these program elements.

ABEND
The last attempted conversion of this program abnormally
terminated:
ABEND-002
Abend occurred in conversion phase 2
ABEND-003
Abend occurred in conversion phase 3

Date and time this program was last converted by CCCA.

5 =

Return code of the post-conversion compile (shown only if the program
was compiled after its last conversion).

A program is compiled after conversion if these conditions are met:

¢ The Compile after converting field on Conversion Options panel 2
(Figure 10 on page 23) is set to Y

* The status of the converted program is NOCHANGE, COMPLETE, or
WARNING

Note: If these conditions are met, and the CICS field on the Conversion
panel is set to Y, the new source code is translated by the CICS command
language translator before compilation.

Date and time of the last post-conversion compile of the new source
program.

Date and time you completed manual changes to the new source program.
You enter this information on the Conversion Log panel (see

fupdating the conversion log” on page 57).

For each file that the program uses, the report lists:

Old Org
Organization of the file before conversion:

A Actual track addressing
D Direct organization
I Indexed organization
R Relative organization
S Standard sequential organization
U Actual track addressing (REWRITE)
W Direct organization (REWRITE)
New Org
Organization that the file requires after the program is converted:
I VSAM Indexed organization
R VSAM Relative organization
S Sequential organization
Cnv Req
Does the file require conversion?
N You will not have to convert the file.
Y You will have to convert the file.

System Name
System name (ddname) of the file, as specified in the ASSIGN
clause of the COBOL program.

52 ccca

Conversion reports

Note: If this system name is not used consistently at your
installation, it may be associated with different data sets.

COBOL Name
The name used for the file in the COBOL program, as specified in
the SELECT statement.

File/Program report

The File/Program report lists details of files used by converted programs:
¢ System name (ddname) of the file

¢ COBOL name of the file

* File organization required by the converted program

* Whether or not you will have to convert the file

This report is sorted by the system name of the files.
Note: This report lists details only for programs converted since you last erased

the conversion log (see|“Erasing the conversion log” on page 58). Also, see
fthere's nothing to report...” on page 49

Use this report for planning file conversions.

shows a sample File/Program report.

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE 04/15/98 17:49:47 Page 1
.......... FILE -- PROGRAM REPORT ..oevvn.n.
SYSTEM PROGRAM ORG CONVERSION COBOL
NAME NAME REQUIRED NAME
EIPARM EIO30BPF I YES EIPARM
IBDAM LCPIO105 R YES BDAM-IN
LCPIO107 R YES BDAM-IN

Figure 19. File/Program report

The columns of this report are described below.

System name (ddname) of the file, as specified in the ASSIGN clause of the
COBOL program.

Note: If this system name is not used consistently at your installation, it
may be associated with different data sets.

2] The names of the converted programs (as specified in the PROGRAM-ID
paragraph of the Identification Division) that use the file with the given
system name.

H Organization required for the file after the program is converted:
I VSAM Indexed organization
R VSAM Relative
S Sequential

4] Does the file require conversion?

NO You will not have to convert the file.
YES You will have to convert the file.

Chapter 5. Conversion reports and the conversion log 53

Conversion reports

B The name used for the file in the COBOL program, as specified in the
SELECT statement.

Copy/Program report

The Copy/Program report lists details of copy members used by converted
programs:

e Programs that use the copy member

* For each program:
— The section of the program into which the member is copied
— The associated name in the COPY statement (if it exists)

This report is sorted by copy member name.
Note: This report lists details only for programs converted since you last erased

the conversion log (see [“Erasing the conversion log” on page 58). Also, see
fthere's nothing to report...” on page 49)

shows a sample Copy/Program report.

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE 04/15/98 17:50:27 Page 1
.......... COPY -- PROGRAM REPORT
2] H a
CopPY PROGRAM LOCATION ASSOCIATED
NAME NAME NAME
ALTPCB AMPM2AA ALT-I0-PCB
CPNMA CPGM1501 WORKING-STORAGE DATA-PARAM-CARD
CPNMD CPGM1501 WORKING-STORAGE DATA-SEL-HEADER

Figure 20. Copy/Program report

The columns of this report are described below.
The name of the copy member.
2] The names of the programs that use this copy member.

Section of the COBOL program into which the member is copied. This is
one of the following;:
¢ Environment Division
* File Section
¢ Identification Division
* Input-Output Section
* Linkage Section
* Procedure Division
* Report Section
* Working-Storage Section

4] Associated name in the COPY statement (if it exists).

COBOL 68 Standard language allows the COPY statement with an an
associated name. For example:

01 INPUT-RECORD COPY RDINZ2.
(where INPUT-RECORD is the associated name)

Program/Copy report

The Program/Copy report lists details of copy members used by converted
programs:

54 ccca

Conversion reports

* Copy members each program uses

* For each copy member:
— The section of the program into which the member is copied
— The associated name in the COPY statement (if it exists)

This report is sorted by program name.
Note: This report lists details only for programs converted since you last erased

the conversion log (see[“Erasing the conversion log” on page 58|). Also, see
lthere's nothing to report...” on page 49)

shows a sample Program/Copy report.

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE 04/15/98 17:53:02 Page 1
.......... PROGRAM --COPY REPORT ..ovevnnn.
PROGRAM COPY LOCATION ASSOCIATED
NAME NAME NAME
LCPTSTO9 LO90PT1 FILE SECTION OUTPUT-RECORD
LO90PT2 FILE SECTION
LO90PT3 WORKING-STORAGE NUM-OF-ITEMS
LO90PT3A WORKING-STORAGE
LO90PT4 WORKING-STORAGE
LCPTST20 L200PT1 WORKING-STORAGE

.......... END OF REPORT e

Figure 21. Program/Copy report

The columns of this report are described below.

The name of the program, as specified in the PROGRAM-ID paragraph of
the Identification Division.

2 The names of the copy members used in this program.

H Section of the COBOL program into which the member is copied. This is
one of the following;:
* Environment Division
* File Section
* Identification Division
* Input-Output Section
* Linkage Section
* Procedure Division
* Report Section
* Working-Storage Section

4] Associated name in the COPY statement (if it exists).

COBOL 68 Standard language allows the COPY statement with an an
associated name. For example:

01 INPUT-RECORD COPY RDINZ2.
(where INPUT-RECORD is the associated name)

Call/Program report

The Call/Program report lists CALL statements in converted programs.

This report is sorted by CALL statement subroutine identifier or subroutine literal.

Chapter 5. Conversion reports and the conversion log 55

Conversion reports

Note: This report lists details only for programs converted since you last erased
the conversion log (see [“Erasing the conversion log” on page 58). Also, see
fthere's nothing to report...” on page 49|

shows a sample Call/Program report.

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE 04/15/98 17:55:50 Page 1
.......... CALL -- PROGRAM REPORT
2]
PROGRAM NO OF CALL
NAME CALLS NAME

BLGA201 00005 'CBLBTS'
BLGF200 00001
AMPM2AA 00010 'CBLTDLI
FCCMENU 00012

MENU 00039
RDTO1 00013
RDTO2 00014
RDTO3 00014

.......... END 0F REPORT e

Figure 22. Call/Program report

The columns of this report are described below.

The name of the program that contains the CALL 'name' statement.
2] The number of CALL 'name' statements in the program.
H CALL statement subroutine identifier or subroutine literal.

Program/Call report

The Program/Call report lists CALL statements in converted programs.
This report is sorted by program name.
Note: This report lists details only for programs converted since you last erased

the conversion log (see|“Erasing the conversion log” on page 58). Also, see
fthere's nothing to report...” on page 49

shows a sample Program/Call report.

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE 04/15/98 17:59:32 Page 1
.......... PROGRAM -- CALL REPORToa...
PROGRAM NO OF CALL
NAME CALLS NAME

AMPM2AA 00010 'CBLTDLI'
00001 'CSERR'
00001 'MPM202'

BLGA201 00005 'CBLBTS'
00002 'DATMAN'
00003 'DISTHD'
00004 'LDCALL'
00026 'PROGMS'

Figure 23. Program/Call report

The columns of this report are described below.

56 ccca

Conversion reports

The name of the program that contains the CALL 'name' statement.
2 The number of CALL 'name' statements in the program.
3] CALL statement subroutine identifier or subroutine literal.

Using the conversion log

CCCA records program conversion statistics in the conversion log.
CCCA uses these statistics to generate the conversion reports.
The conversion log is stored in your Control file.

To browse a summary of the conversion log, and update statistics of manual
conversions, see [“Browsing or updating the conversion log.”|

To erase the conversion log, see [“Erasing the conversion log” on page 58

Browsing or updating the conversion log

To browse or update the conversion log, go to panel 1.L (the Conversion Log

panel, shown in Figure 24).

4 . N
------------------------------- CCCA Conversion Log ---------- Row 1 to 2 of 2
Command ===> SCROLL ===> HALF
Enter manual completion details
PF1 Help PF3 Exit PF4 Return PF7 Up PF8 Down ENTER Save details
2] --Conversion--- ----- Manual completion------
Program name Status Date Time YY/MM/DD HH:MM Comments
PIROO1 COMPLETE 98/04/16 19:18 /! :
PIR002 COMPLETE 98/04/15 15:48 /
PIR0O3 COMPLETE 98/04/15 17:01 /
PIR0O3B WARNING 98/04/16 12:07 /]
PIR004 COMPLETE 98/04/15 18:20 /!
PIROO7 COMPLETE 98/04/20 14:09 !/
PIR0O8 MAN. COMP 98/04/19 14:08 /
kokkk * *k Bottom of data *** *x * *okokk
o %

Figure 24. Conversion Log panel

For each program converted since you last erased the conversion log, this panel
lists:

* Status of the program after it was last converted by CCCA

* Date and time the program was last converted by CCCA

If you have to manually convert a program, this panel allows you to record:
¢ Date and time you completed manual conversion

¢ Comments about the conversion

When you have updated these details, press Enter to save them.

Chapter 5. Conversion reports and the conversion log 57

Conversion log

Note: Enter information on this panel only if you are using the log to keep track
of manual conversion effort. CCCA does not use the information you enter on this
panel. (The date and time you enter appear on the Program/File report, under the
heading “Manual completion”.)

To scroll through the conversion log, use PF7 and PF8.

The columns of this panel are described below.
The name of the converted COBOL program.
2| Status of the program after it was last converted by CCCA:

NOCHANGE
CCCA made no changes to the program. No manual changes to
the program are required.

COMPLETE
The program has been completely converted. No manual changes
to the program are required.

WARNING
The program has been converted. It may compile and execute
successfully, but you should inspect the converted language
elements that received level 04 diagnostics.

MAN. COMP
Manual changes to the program may be required. Check the
language elements that received level 08 diagnostics.

ABEND
The last attempted conversion of this program abnormally
terminated:
ABEND-002
Abend occurred in conversion phase 2
ABEND-003
Abend occurred in conversion phase 3

Date and time the program was last converted by CCCA.

Enter:
¢ Date and time you completed manual changes to the program
* Comments you want to make about the conversion of this program

Erasing the conversion log

58 ccca

Erasing the conversion log deletes the program conversion statistics.

You should erase the conversion log when it becomes too large or when you have
converted an application, and you are no longer interested in the conversion
statistics.

Attention (MVS only)
Do not erase the conversion log while you are running a batch conversion.
The conversion results may be unpredictable.

To erase the conversion log:

1. Go to panel 1.E (the Confirm Erase Log panel, shown in [Figure 25 on page 59).

Conversion log

/ N

Command ===>

Press Enter to erase the conversion log and exit
(A11 conversion statistics will be deleted)

Press PF3 to exit without erasing the conversion Tog

PF1 Help
-

Figure 25. Confirm Erase Log panel

2. To erase the conversion log and exit the panel, press Enter.
or

To exit the panel without erasing the log, press PF3.

Chapter 5. Conversion reports and the conversion log 59

Conversion log

60 ccca

Chapter 6. Customizing CCCA

This chapter describes how to:

* Customize CCCA

* Update the COBOL Reserved Word data set

* Compile LCPs

* Delete LCPs from the LCP library

 Activate and deactivate debugging for each LCP
* Print a directory of the LCP library

¢ Update messages

You can use CCCA as supplied to convert your COBOL programs.

However, if you want to:
* Convert, flag, or remove additional (possibly non-COBOL) language elements
* Change how CCCA converts particular language elements

then you need to customize CCCA by:
* Modifying the supplied Language Conversion Programs (LCPs)
* Writing new LCPs

An LCP is a COBOL-like program that converts one or more COBOL language
elements.

For a list of supplied LCPs, see [Appendix G, “LCP directory,” on page 191/

© Copyright IBM Corp. 1982, 2013

61

Customizing

62 ccca

Input source program
EXHIBIT NAMED WORK-A.

i

e
N
Phase 1:
COBOL Analyze
Reserved Word —» in
: put
file source
Change
code
EXHIBIT 990 B l
~ :
Tokenized source
EXHIBIT 990
e
N .
Library of i

compiled LCPs

Phase 2:

> Create

H EXHIBIT

~_

change
requests

Change
requests

Phase 3:
Apply
changes and
generate
output

i

Change code 990 means
there is an LCP for this
token, with the same name
as the token.

Converted source program

DISPLAY "WORK-A=" WORK-A.

Figure 26. How CCCA invokes LCPs

Customizing

How CCCA invokes LCPs

Before customizing CCCA, you need to understand how CCCA invokes LCPs
during conversion.

This section assumes you have already read the introductory section|"How CCCA
works” on page 4

[Figure 26 on page 62| shows how CCCA uses the tokenized source and the COBOL
Reserved Word data set to determine which LCPs to invoke during conversion.

In conversion phase 1, CCCA reads the input source program and creates a token
record for each:
* COBOL word
e Literal
* Picture character-string
* Separator
* Line of the following comment paragraphs in the Identification Division:
- AUTHOR
— INSTALLATION
- DATE-WRITTEN
- DATE-COMPILED
- SECURITY
- REMARKS (DOS/VS COBOL and OS/VS COBOL only)

Comment lines, and the following compiler directives, are not tokenized:
* SKIP1

* SKIP2

+ SKIP3

* EJECT

* TITLE

* *CBL

+ *CONTROL

CCCA checks whether each COBOL word in the input source program is in the
COBOL Reserved Word data set or not.

The COBOL Reserved Word data set lists words that may invoke LCPs, and
specifies:
Word type
Where a word can occur in a COBOL program
Change code
The LCP (if any) to invoke when a word occurs

If CCCA finds the word in the COBOL Reserved Word data set, it adds the word
type and change code to the token record.

In conversion phase 2, CCCA reads the tokenized source. When a token record is
encountered that has something other than change code 999, CCCA invokes the
LCP that is indicated by the code.

The invoked LCPs generate detailed change requests for converting the input
source program.

In conversion phase 3, CCCA applies the change requests to the input source
program.

Chapter 6. Customizing CCCA 63

Customizing

Customizing the way CCCA converts a language element

If CCCA already converts a language element, but you want to customize the way
it is converted:

1. Determine which LCP converts the language element
Determine the word in the language element that invokes the LCP.
The word will be on the Reserved Words panel (2.1, shown in
page 66) with a change code other than 999.

If the word's Change code is
990 This word invokes an LCP that has the word in its CONVER statement.
This LCP is not invoked by any other words.

The LCP source member name is the Reserved word name, or an
abbreviation.

nnn (Other than 990 and 999) this word invokes an LCP that has LCP-nnn
in its CONVER statement.

This LCP may be invoked by other words.

The LCP source member name is LCPnnn.

Examine the LCP source member to confirm that this is the LCP that converts
this language element.

If you are not sure, delete the LCP from the LCP library, and see if CCCA still
converts the language element (see [“Deleting LCPs and activating /deactivating]
[debugeing for LCPs” on page 71)). If it does, this isn’t the LCP you're after.
Replace the LCP by compiling it (see [“Compiling LCPs under MVS” on page|
@ or|“Compiling LCPs under VM” on page 70), then continue looking for the
correct LCP.

If you are replacing an existing LCP which has a change code of 990 (invoked
by word), then delete the old LCP (see|Deleting LCPs and|
[activating /deactivating debugging for LCPs” on page 71) before updating the
reserved word table and recompiling the new LCP.

2. Edit the LCP source

Update the LCP source member to convert the language element as required.

For details, see [Chapter 7, “Developing Language Conversion Programs,” on|
3. Compile the LCP

For details, see [“Compiling LCPs under MVS” on page 68|or [“Compiling LCPs|
[under VM” on page 70

4. Test the LCP
Convert sample programs containing the language element and all its variants.

To activate debugeing for the LCP, see [“Deleting LCPs andl
[activating / deactivating debugging for LCPs” on page 71

Customizing CCCA to convert an additional language element

To convert a language element not currently converted by CCCA:
1. Choose the word in the language element that will invoke the LCP

If there is more than one candidate for this word, then choose the word that
occurs least often in other language elements. (You should try to minimize the
number of times an LCP is called unnecessarily.)

64 ccca

Customizing

2. Determine whether the word already invokes an LCP
Go to panel 2.1 (the Reserved Words panel, shown in [Figure 27 on page 66).

A word that satisfies the following conditions already invokes an LCP:
* Appears in the reserved word list.
* Has any Change code except 999.

Otherwise, the word does not invoke an LCP.
3. If the word already invokes an LCP
If the word's Change code is

this word invokes an LCP that has the word in its CONVER statement.

990

nnn

This LCP is not invoked by any other words.

The LCP source member name is the Reserved word name, or an
abbreviation.

a.

Update the word's Change code to 999.
If necessary, update the Word type.
For details, see|“Updating the COBOL reserved word Data Set” on|

|Eage 66.|

Edit the LCP source to convert the language element.

For details, see|Chapter 7, “Developing Language Conversion|
[Programs,” on page 77

(other than 999 and 990) this word invokes an LCP that has LCP-nnn in
its CONVER statement.

This LCP may be invoked by other words.

The LCP source member name is LCPnnn.
a. Update the word's Change code to 999.

If necessary, update the Word type.

For details, see|“Updating the COBOL reserved word Data Set” on|
|Eage 66.|

Copy the code from the existing LCP source member to a new
member.

In the new LCP source, change the LCP-nnn in the CONVER
statement to the reserved word.

Edit the new LCP source to convert the language element.

For details, see|Chapter 7, “Developing Language Conversion|
[Programs,” on page 77

If the word does not invoke an LCP
a. If the word does not appear in the Reserved Word list, add the word to the

b.

C.

list. Specify a Change code of 999.

If necessary, update the Word type.

For details, see [“Updating the COBOL reserved word Data Set” on page 66.
Write a new LCP to convert the language element.

For details, see [Chapter 7, “Developing Language Conversion Programs,” on|

4. Compile the LCP
For details, see [“Compiling LCPs under MVS” on page 68|or [‘Compiling LCPs|

[under VM” on page 70

5. Test the LCP

Chapter 6. Customizing CCCA 65

Customizing

Convert sample programs containing the language element and all its variants.

To activate debugging for the LCP, see [“Deleting LCPs and|
[activating /deactivating debugging for LCPs” on page 71

Updating the COBOL reserved word Data Set

66 cCcca

As supplied, the COBOL Reserved Word file contains a record for each reserved
word in the source language levels.

To browse or update the Reserved Word data set, go to panel 2.1 (the Reserved
Words Update panel, shown in .

Command ===>

Command Tine:
L string Scroll to reserved word

Action column:
S Select a word for update
D Delete word

Add or update word ==>
Name: Change Code: Word Type:

PF1 Help PF3 Exit PF7 Up PF8 Down Enter Update
Action Reserved word name Change code Word type Default Code

ACCEPT 990 03
ACCESS 990 02

\\PFl Help PF3 Exit PF4 Return PF7 Up PF8 Down Enter Add/Delete/Update

Figure 27. Reserved Words panel

This panel lists the reserved words in alphabetical order.

To scroll through the list:
* Use PF7 and PFS8.

To locate a specific reserved word:

* On the command line, type L, LOC, or LOCATE, followed by the word you
want to find.

* Press Enter.

To add a new reserved word:
* Tab to Add or update word.
* Enter:

— Name (required)

— Change code (required)

— Word type (optional)

To update a reserved word:

* Locate the reserved word.

* Type S in the adjacent Action entry field.
* Press Enter.

This places the reserved word into the Add or update word section of the panel,
ready for updating.
* Opvertype existing fields.

Customizing

* Press Enter.

To delete a reserved word:
* Locate the reserved word.
* Type D in the adjacent Action entry field.

The word is deleted from the file when you exit the panel. While you are using
the panel, you can reinstate the word at any time by overtyping the D in the
Action entry field with a space.

The fields in this panel are described below.

Reserved word name
This is the key field.

Change code
Indicates which LCP (if any) CCCA invokes when it encounters this word in
the source program being converted:

999
990

nnn

Word type

Word does not invoke an LCP.
Invokes an LCP that has the word in the CONVER statement.

(Other than 999 and 990). This word invokes an LCP that has LCP-nnn
in its CONVER statement.

The following list shows the change codes used by CCCA and the
change codes you can use for your own LCPs:

000
860-989
992-998

Reserved, used by CCCA.
001-799

Available for your own LCPs.
800-859

Used by supplied LCPs.
991

Used by CCCA.

Specifies where in a COBOL program the word occurs. You specify this value
as two characters. Each character can be:

WIN =

5

Indicates the word occurs...

In a paragraph or section name

At the beginning of a clause

At the beginning of a statement and its operands
At the beginning of a phrase

A pair of spaces or pair of zeros indicates the reserved word does not occur in
any of the above places.

For definitions of division header, section header, paragraph header, clause,
statement and phrase, see the COBOL Language Reference for your platform.

Default Code
The original IBM-supplied change code, displayed for informational purposes
only. You cannot update this field.

Chapter 6. Customizing CCCA 67

Customizing

Compiling LCPs under MVS

Use the LCP Compiler panels to submit a batch job to compile one or more LCPs.

To submit a compilation job:

1. Go to panel 2.2 to display the LCP Compiler job statement information panel

(see |[Figure 28).

Command

Job statement information: (Verify before proceeding)
===> //VCATRCAH JOB (9999,040,090,ST3),'CCCA',

==> // NOTIFY=VCATRCA,TIME=5,

==> // REGION=4096K,USER=VCATRCA,MSGCLASS=V,CLASS=C
==> /+«JOBPARM FORMS=SP2

SYSOUT class ===> =*

PF1 Help PF3 Exit PF4 Return ENTER Proceed

Figure 28. LCP compiler job statement information panel (MVS)

2. If necessary, update the text in:

Job statement information
The JCL for the LCP compile job card.

SYSOUT class
The output class to which you want the output of the LCP compile job
sent.
SYSOUT class can be:
* Any letter (A through Z)
* Any numeral (0 through 9)
* An asterisk (*)

3. Press Enter to display the LCP Compiler selection panel (see [Figure 29 on page

68 ccca

Customizing

/ N

LCP source:

Project. . . . ===> VCATRC2

Library. . . . ===> CCCA

Type ===> SABJLCP

Member ===> (Blank for member selection list)
Other source file:

Data set name ===>

PF1 Help PF3 Exit PF4 Return ENTER Generate JCL

Figure 29. LCP Compiler Selection panel (MVS)

4. Enter values for the full data set name and member name for one of these:
e An ISPF library
* Other partitioned data set name.

If you do not specify a member name, a member list is displayed. You may
select members from the list by entering an S in front of the member names.

5. Press Enter.

ISPF generates the JCL for the compilation and then displays the LCP Compiler
submission panel (see Figure 30).

4 N\

Instructions:
Press ENTER to continue generating JCL.
Press PF3 to submit job and exit
Press PF4 to submit job and return
Press PF12 to exit without submitting job
Enter Cancel command to exit without submitting job.

4 LCP member(s) built for compilation.

Job statement information:
//VCATRCAH JOB (9999,040,090,ST3),'CCCA",
// NOTIFY=VCATRCA,TIME=5,
// REGION=4096K,USER=VCATRCA,MSGCLASS=V,CLASS=C
/+*JOBPARM FORMS=SP2

PF1 Help PF3 Submit Job PF4 Submit job PF12 Cancel ENTER Generate JCL
and exit and return for member

N J
Figure 30. LCP Compiler Submission panel (MVS)

This panel shows the number of LCP members that have been selected for
compilation and redisplays the Job card parameters for information only. This
panel can no longer be overtyped, since the Job statement has already been
generated.

To select additional LCPs to be compiled, press Enter,

Chapter 6. Customizing CCCA 69

Customizing

To cancel the submission of the job, type C on the command line and press
Enter.

6. Press either PF3 or PF4.
ISPF submits the generated JCL for execution.

The message JOB xxxxxc SUBMITTED appears once for each member that you
selected for compilation (where xxxxxc is the specified job name). The final
message is followed by three asterisks (**x).

You may press Enter or any other interrupt key to return to the LCP
Development Aid menu.

Compiling LCPs under VM

Use the LCP Compiler Selection panel to compile one or more LCPs.

To compile an LCP:
1. Go to panel 2.2 to display the LCP Compiler Selection panel see (Figure 31).

---------------------- CCCA LCP Compiler selection ----===--==--mmmmmmmmmmmmemom

LCP source:

Project. . . . ===> CCCA

Library. . . . ===> REGTEST

Type ===> COBOL

Member ===> (Blank for member selection list)
CMS file:

File ID ===> samplel cobol A

If not Tinked, specify:

Owner's ID ===> Device addr. ===> Link access mode ===>
Read password ===> Update password ===>

PF1 Help PF3 Exit PF4 Return ENTER Proceed

Figure 31. LCP Compiler Selection panel (VM)

2. Enter values for:

LCP source
If the LCP that you want to compile is within an ISPF partitioned data set,
enter the data set name and the member name in the Project, Library,
Type, and Member fields.

If the LCP that you want to compile is within a MACLIB, enter the
MACLIB file name in File ID and the member name in Member.

If you do not specify a member name or an asterisk, CCCA displays the

LCP Compiler Member Selection panel after you press Enter (see
on page 71).

70 ccca

Customizing

.

Command ===>

Select the LCP member(s) to be compiled and press Enter
Press PF3 to initiate compilation

NAME SELECT
UTILOO
UTILo1
UTILOS

~

Figure 32. LCP compiler member selection panel (VM)

Place an “S” in front of all members in the list that you want compiled.

CMS file-File ID
If the LCP that you want compiled is a simple CMS file, enter the file
details (fn ft fm).

Linkage fields
If you are not already linked to the minidisk where the LCP resides, enter
the appropriate details in Owner's ID, Device addr, and Link access mode.

Passwords
If required, enter the appropriate passwords in the Read password and
Update password fields.

. Press Enter.

CCCA compiles the LCP (or LCPs) that you have selected in foreground mode.
If errors are are encountered during the compilation process, CCCA displays a
message.

If you used the LCP Compiler Member Selection panel to select one or more
members for compilation, or specified an asterisk (*) to compile all members,
CCCA displays a message indicating which member it is currently compiling.

When the compilation process is complete, CCCA redisplays the LCP Compiler
Selection panel, with a message indicating the return code for the compilation.

4. To return to the LCP Development Aid menu, press PF3.

Deleting LCPs and activating/deactivating debugging for LCPs

To delete LCPs or activate/deactivate debugging for LCPs, go to panel 2.3 (the
Delete/Debug LCP panel, shown in [Figure 33 on page 72).

If debugging for an LCP is activated, during conversion CCCA generates a “trace”
of each executed statement of the LCP.

Deleting an LCP only deletes the LCP from the LCP library. It does not delete the
LCP source member.

Chapter 6. Customizing CCCA 71

Customizing

Command ===>

Actions:

DBG Activate debugging for an LCP
blank Deactivate debugging for an LCP
DEL Delete LCP from LCP Tibrary

—————————————————————————— CCCA Delete/Debug LCP ---------- Row 1 to 48 of 178

Scroll ===> PAGE

Commands :

DBG Activate debugging for all LCPs
CLR Deactivate debugging for all LCPs
L string Scroll to string

PF1 Help PF3 Exit PF4 Return PF7 Up PF8 Down

Action LCP name
ACCEPT
ACCESS
ACTUAL
ADD

ALL
ALPHABETIC
ALTER
APPLY
ASCENDING
ASSIGN
BLANK

L

Figure 33. Delete/Debug LCP panel

The panel lists the names of the LCPs in the LCP library in alphabetical order.

To scroll through the list, use PF7 and PF8.

To delete an LCP from the LCP library
Type DEL next to the LCP, then press PF3.

To put the LCP back in the library, compile the LCP (see [“Compiling LCPs|
funder MVS” on page 68| or [“Compiling LCPs under VM” on page 70).

To activate debugging for an LCP
Type DBG next to the LCP, then press PF3.

To deactivate debugging for an LCP
Erase the DBG next to the LCP, then press PF3.

To activate debugging for all LCPs
Type DBG on the command line, then press Enter.

To clear actions for all LCPs
Type CLR on the command line, then press Enter.

To Tocate an LCP using a string search
Type L xxx on the command line, then press Enter.

Generating a directory of the LCP library

72 CCCA

To generate a directory of the LCP library, go to panel 2 (the LCP Development
Aid menu), then select option 4 (LCP DIRECTORY).

[Figure 34 on page 73|is an extract from a directory of the LCP library.

5648-B05 V2R1

RESERVED WORD

ACCESS
ACTUAL
ADD
ALL

Customizing

- IBM COBOL CONVERSION AID - 04/16/98 15:47:58 Page 1
LCP DIRECTORY ...ooe....
PROCESSING DESCRIPTION DATE TIME CORE DBG
SIZE OPT
UPDATE FILE INFORMATION IN CONTROL FILE 04/15/98 09:49:44 575
REPLACE BY RELATIVE 04/15/98 09:49:52 630
ADD WITH BLL'S 04/15/98 09:49:58 8205
MOVE ALL ... 04/15/98 09:50:44 885
CHANGE TO ALPHABETIC-UPPER 04/15/98 09:50:39 260

ALPHABETIC

Figure 34. Extract from a directory of the LCP library

For each LCP in the LCP library, the directory lists:

COBOL reserved word or LCP-nnn identifier specified in the CONVER
statement of the LCP.

As supplied, this is also the LCP source member name (or, if the reserved
word is too long, the member name is an abbreviation of the reserved
word).

Descriptive text in the CONVER statement of the LCP.

Date that the LCP was last compiled (in the format MM/DD/YY).
Time that the LCP was last compiled.

Size of the compiled LCP in bytes.

The maximum permitted size for a compiled LCP is 12600 bytes.
Indicates whether debugging for the LCP is activated:

blank Debugging is not activated

DBG Debugging is activated

The complete directory of the LCP library (as supplied) is shown in

[directory” on page 201

Updating the message file

The message management facility interactively handles message file processing,
making individual messages directly accessible at any time. Through the facility
you can browse, add, update, and delete messages.

Select option 5 from the LCP Development Aid menu (see [Figure 6 on page 14) to
display the Messages panel (see [Figure 35 on page 74).

Chapter 6. Customizing CCCA 73

Customizing

74 CCCA

A - Add a new message

U - Update existing message

D - Delete existing message

blank - Display of existing message

Message ID ===
Severity . ===> (00 - 99)

Short message:

vV V Vv
(I |

\
1

Long message:

v
1

v
1

nm o un
mnm . un
nun u n
v
1

\
1

\PFl Help PF3 Exit PF4 Return

Figure 35. Messages panel

The fields are:

Command
Choose the command code from:
A Add a new message
U Update an existing message
D Delete an existing message
Blank Display an existing message
Message ID

This must always be entered. It takes the form ABJnnnn, where nnnn is the
4-digit identifier.

Severity
A 2-digit number (00 through 99). The severity level of a message can
affect the output of CCCA. For details, see |[“Setting conversion options” on|

Short message
This message will appear on the conversion diagnostic listing.

Long message
This message is informational only and will not be displayed on the listing.
It is useful for displaying supplementary information or guidelines for
handling statements that require manual inspection.

If this message will be longer than four 60-character lines, press Enter to
display a message continuation panel, which allows you to create a longer
message.

To display an existing message:

1. A Command value is not required
2. Enter a value for Message ID

3. Press Enter

To add a new message:
1. Enter a Command value of A

3.

Customizing

Enter values for: Message ID, Severity, Short message, and, optionally, Long
message.

Press Enter

To update the severity level and message text of a message:

Ao~

5.

Enter a Command value of U
Enter a value for Message ID
Press Enter

Enter modified values for Severity, Short message, and Long message as
required

Press Enter

To delete an existing message:

1.
2.
3.

Enter a Command value of D
Enter a value for Message ID
Press Enter

Note: CCCA is delivered with messages in English. The message management
facility may be used to replace the message text with that of a different language,
as long as the language uses characters of the EBCDIC character set.

Chapter 6. Customizing CCCA 75

Customizing

76 CCCcA

Chapter 7. Developing Language Conversion Programs

Read this chapter if you are planning to develop your own Language Conversion
Programs (LCPs) or if you want to change the supplied LCPs.

This chapter describes:
* LCP language structure and syntax
* How to use LCP functions to:
Edit the tokenized source program
Read and update the files CCCA uses during conversion
* How to debug LCPs
* Differences between processing tokens and elements
* COBOL Reserved Word data set processing

This chapter documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of CCCA.

What is an LCP?

An LCP is a COBOL-like program containing:
e A subset of COBOL statements
e Calls to CCCA functions

What LCPs do

LCPs generate change requests to convert language elements from one COBOL
implementation to another.

(CCCA invokes LCPs in conversion phase 2, and applies their change requests in
phase 3. For details, see ['How CCCA invokes LCPs” on page 63)

LCPs can:

e Add, replace, or remove words, clauses or statements

* Indicate areas in the converted code you should review for possible manual
changes

* Update conversion statistics in the Control file

CCCA is supplied with LCPs for converting between several COBOL
implementations (listed in|“What CCCA does” on page 1).

You can customize CCCA to meet your installation's requirements by:
* Developing new LCPs
* Modifying the supplied LCPs

For a list of LCPs supplied with CCCA, see IAppendix G, “LCP directory,” on page|

LCP structure

Here are the details of the structure required in an LCP.

© Copyright IBM Corp. 1982, 2013 77

Developing LCPs

LCP divisions

LCPs contain three separate COBOL-like divisions (but unlike COBOL, there are no
division headers):
Identification Division
Consists of only one statement: CONVER, CONVERA, or CONVERQ. This
statement identifies and describes the LCP, and specifies whether
nonnumeric literals are enclosed in apostrophes (') or quotation marks (").
Data Division (optional)
Consists of data description entries.

Your LCP may not need a Data Division, because many of the data items

you use in an LCP are predefined by CCCA, and do not need a Data
Division entry.

Procedure Division

Consists of the statements and function calls that define the conversion
process.

The Procedure Division must start with a paragraph name.

LCP source line format

LCP source lines use the 72-column COBOL reference format:

1 2 3 4 5 6 7
}2345?7?901234567890123456789012345678901234567890123456789012345678901%

T
Program text
Comment character

Sequence numbers

Column
Is used for...

1 through 6
Sequence numbers

7 Comment character (except for 05 and 77 data description entries and the
CONVER statement, this indicates the remainder of the line is comment
text)

8 through 72
Program or comment text

Characters
lists the characters you can use in an LCP, their meaning, and their use.

Note:

1. You cannot use lowercase letters (a—z) in LCPs, except in comments and
nonnumeric literals.

2. Comments and nonnumeric literals can contain any EBCDIC character.

Table 4. LCP characters—their meanings and uses

Character Meaning Use
b Space or Blank Punctuation
Decimal point or Period Punctuation

78 ccca

Developing LCPs

Table 4. LCP characters—their meanings and uses (continued)

Character Meaning Use

0-9 Numerals
Data item identifiers
Nonnumeric literals
Numeric literals
Paragraph names
Reserved words

Alphabet Data item identifiers
(uppercase only) Nonnumeric literals
Paragraph names
Reserved words

- Hyphen
Data item identifiers
Paragraph names
Reserved words

* Asterisk In column 7, indicates the remainder
of the line is a comment (except for
05 and 77 data entry descriptions and
the CONVER statement)

/ Stroke or Slash In column 7, indicates the remainder
of the line is a comment

= Equal sign Relational operator in conditions
(synonym for EQUAL TO)

> Greater than Relational operator in conditions
(synonym for GREATER THAN)

< Less than Relational operator in conditions
(synonym for LESS THAN)

Apostrophe Encloses nonnumeric literals (if you
specify the CONVER or CONVERA
statement)

Quotation mark Encloses nonnumeric literals (if you
specify the CONVERQ statement)

Data item identifiers and paragraph names

Data item identifiers and paragraph names:
* Must start with a letter (A through Z)
* Can contain these characters:

0 through 9

A through Z

- (hyphen)
¢ Can contain up to 30 characters
 Cannot end with a hyphen

Reserved words

You cannot use LCP reserved words for paragraph names or for your own data
item identifiers.

LCP reserved words consist of:
¢ COBOL language elements, keywords, and related symbols

e LCP function names

Chapter 7. Developing Language Conversion Programs 79

Developing LCPs

¢ Predefined data item identifiers

For a complete list of LCP reserved words, see |[Appendix D, “LCP reserved|
words,” on page 167

Literals

Nonnumeric literals
A nonnumeric literal is a character string enclosed by apostrophes (') or
quotation marks (") and containing any EBCDIC character. The maximum
length of a nonnumeric literal is 30 characters.

If you want to imbed an enclosing character in a nonnumeric literal, you
must specify a pair of enclosing characters. For example:

"THIS ISN""T WRONG"

The choice of apostrophe or quotation mark is specified by the CONVER
statement at the start of an LCP:

CONVER or CONVERA
Specifies that nonnumeric literals are enclosed by apostrophes (')

CONVERQ
Specifies that nonnumeric literals are enclosed in quotation marks
)
Numeric literals

A numeric literal is a string of digits (0 through 9) with a maximum length
of 10 digits. Numeric literals are unsigned.

Comment lines

Comments appear on a line by themselves; you cannot mix code and comments on
the same source line.

Comment lines can appear anywhere in an LCP.

Format

(1)
»—[;:—comment- text »><

Notes:
1 An asterisk (*) or a slash (/) must appear in column 7.

comment-text
Can contain any EBCDIC characters.

Punctuation

Statements
Each statement must begin on a new line.

Paragraphs
A paragraph is a sequence of statements, beginning with a paragraph
name. A paragraph name is a label that can be referred to by GO TO and
PERFORM statements.

Paragraph names must appear on a line by themselves.

80 ccca

Periods

Developing LCPs

A period must appear immediately following:
* The last statement in a paragraph

* A paragraph name

* A data item identifier

* The last statement within an IF statement (for details, see |“IF statement’

A period may appear after any statement (except CONVER, CONVERA, or
CONVERQ); except for the situations described in the list above, these
trailing periods are optional and are not significant.

Blank lines

Blank lines can appear anywhere in an LCP.

LCP statement

summary

shows a summary of LCP statements.

Table 5. LCP statement summary

Division Statement Description
Identification Division CONVER, Identifies and describes the LCP, and specifies whether
CONVERA, nonnumeric literals are enclosed in apostrophes (') or quotation
CONVERQ marks (").
Data Division (optional) 01, 05, 77 Defines data items.
Your LCP may not need a Data Division, because many of the
data items you use in an LCP are predefined by CCCA, and do
not need a Data Division entry.
Procedure Division ADD Adds one number to another.
EXIT Must appear in the last paragraph executed by a
PERFORM THRU statement.
GO TO Transfers control to another paragraph in the LCP.
GO TO END-CHANGE terminates the LCP.
IF Controls the execution of statements by testing a condition.
For information on conditions, see|”Conditions” on page 84
MOVE Copies a numeric or nonnumeric literal or data item to another
data item.
PERFORM Executes one or more paragraphs a specified number of times or
until a specified condition is true.
SUBTRACT Subtracts one number from another.

The following sections describe each statement in detail.

Identification Division

Here are the details of the contents of the Identification Division.

CONVER statement
The CONVER statement:
¢ Identifies and describes the LCP

Chapter 7. Developing Language Conversion Programs 81

Developing LCPs

82 ccca

* Specifies whether nonnumeric literals are enclosed in apostrophes (') or
quotation marks ().

Format

(1) (2)
>k CONVER COBOL-reserved-word:I—descrz'ptive-text—N
ECONVERA— LCP-nnn

CONVERQq——

Notes:
1 An asterisk (*) must appear in column 7.
2 CONVER, CONVERA, or CONVERQ must appear in columns 12-18.

CONVER or CONVERA
Specifies that nonnumeric literals are enclosed in apostrophes (').

CONVERQ
Specifies that nonnumeric literals are enclosed in quotation marks ().

COBOL-reserved-word
The COBOL reserved word that this LCP converts. Must be alphanumeric,
starting with an alphabetic character.

This word must appear in the COBOL Reserved Word data set. For details, see
[“Updating the COBOL reserved word Data Set” on page 66

LCP-nnn
If this LCP converts more than one COBOL reserved word, identify the LCP by
“LCP-" followed by three digits (for example: LCP-352).

Each COBOL reserved word that this LCP converts must appear in the COBOL
Reserved Word data set, with a change code of nnn. For details, see
fthe COBOL reserved word Data Set” on page 66)

descriptive-text
A nonnumeric literal (with a maximum length of 50 characters) that describes
what the LCP does.

Must be enclosed in either apostrophes (') or quotation marks ("), depending
on whether you specified CONVER, CONVERA, or CONVERQ.

For example: "OTHERWISE replaced by ELSE".

Note:

1. The LCP directory lists the COBOL-reserved-word (or LCP-nnn) and the
descriptive-text of all LCPs. To view or print the LCP directory, see
[a directory of the LCP library” on page 72.|

2. As supplied, LCP source member names are the same as the identifier in this
CONVER statement: either COBOL-reserved-word or LCPnnn.

Note that you specify LCP-nnn in the CONVER statement, but the LCP source
member name is LCPnnn, with no hyphen.

3. You can use any name for your LCP source members; CCCA only looks at the
identifier in the LCP's CONVER statement (not its source member name).

Developing LCPs

Data Division (Optional)

Data Division entries define data items.
You can define only elementary data items in an LCP.

Unlike a COBOL program, in an LCP there is no difference between “05” and “77”
data items. The 01, 05, and 77 numbers are kept only to maintain a COBOL-like
appearance.

Note: Your LCP may not need a Data Division, because many of the data items
you use in an LCP are predefined by CCCA, and do not need a Data Division

entry. For a complete list of predefined data items, see|{Appendix E, “Predefined|
[data items,” on page 175.|

Format 1 (treated as comment only)

(1)

»_E*Ol identifier—. ><
01

Notes:

1 An asterisk (*) or a blank must appear in column 7. 01 must appear in
columns 8-9.

Format 2

(1)
*77 identifier——PICTURE 9(n)——.
L 77 PICJ l—X(n):l_

A\
A

Notes:

1 An asterisk (*) or a blank must appear in column 7. 77 must appear in
columns 8-9.

Format 3

(1)
x 05 identifier——PICTURE 9(n)—-.
L e Loe—T LamJ

A\
A

Notes:

1 An asterisk (*) or a blank must appear in column 7. 05 must appear in
columns 12-13.

identifier
A data item identifier:
* Must start with a letter (A through Z)
* Can contain these characters:
0 through 9
A through Z
- (hyphen)
* Can contain up to 30 characters
* Cannot end with a hyphen

Chapter 7. Developing Language Conversion Programs 83

Developing LCPs

9(n)
Specifies that the data item is numeric (can contain only digits), with length n
(where n is 1 through 10).

If n is less than 10, you can add a leading zero. For example: 9(03).

X(n)
Specifies that the data item is alphanumeric (can contain any EBCDIC
characters), with length n (where 7 is 1 through 30).

If n is less than 10, you can add a leading zero. For example: X(09).

Format 1
Treated as a comment. An asterisk (*) or a blank must be in column 7, and 01
must appear in columns 8-9.

Format 2
An asterisk (*) or a blank must be in column 7, and 77 must appear in columns
8-9.

Format 3

An asterisk (*) or a blank must be in column 7, and 05 must appear in columns
12-13.

Procedure Division

Here are the details of the Procedure Division

ADD statement

The ADD statement adds two numbers, and stores the result in the data item
identifier-2.

Format

»—ADD—[identifier—l:l—TO—identifier—Z |_ J ><
n .

identifier-1
identifier-2
Numeric data items.

n A numeric literal.

Conditions

The IF and PERFORM UNTIL statements use conditions to determine whether or
not to execute statements.

There are two types of condition: simple and combined.

Simple conditions
Simple conditions must appear on the same source line as IF or UNTIL. For
example:
IF simple-condition
statement-1

ELSE
statement-2.

84 ccca

Developing LCPs

Format

A\
A

»»—operand-1 GREATER THAN——operand-2
Lis Lyord o

—LESS THAN——

<

—EQUAL TO———

operand-1

operand-2
The operands to be compared. These can be literals or data items, but they
must be of the same type (numeric or nonnumeric). You cannot compare a
numeric operand with a nonnumeric operand.

Combined conditions
A combined condition consists of either:
Format 1
Two or more simple conditions connected by OR
Format 2
Two or more simple conditions connected by AND

You cannot mix OR and AND in a combined condition.

In a combined condition:
* simple-condition-1 must appear on the same source line as IF or UNTIL

¢ “OR simple-condition-2" and “AND simple-condition-2” must appear on a separate
source line, immediately following the IF or UNTIL line

For example:

PERFORM function-name
UNTIL simple-condition-1
OR simple-condition-2

Format 1

»»—simple-condition-1 ><

»»—Y OR—simple-condition-2

v
A

Format 2

v
A

»»—simple-condition-1

Chapter 7. Developing Language Conversion Programs 85

Developing LCPs

»»—Y AND—simple-condition-2 ><

simple-condition-1
simple-condition-2
Simple conditions. For details, see [“Simple conditions” on page 84/

EXIT statement

The EXIT statement must appear in the last paragraph executed by a PERFORM
THRU statement.

The EXIT statement:

* Must appear on a line immediately below a paragraph name
* Must be immediately followed by a period

* Must be the only statement in the paragraph

Format

\4
A

»»>—exit-paragraph-name—.

»>—EXIT—. >

exit-paragraph-name
The paragraph name appearing after THRU in the PERFORM statement. For
details, see ['PERFORM statement” on page 89

GO TO statement

The GO TO statement transfers control to another paragraph in the LCP.

GO TO END-CHANGE terminates the LCP.

Format

»»—G0 TO—[paragr‘aph—name ><
END-CHANGuE4 LJ

paragraph-name
A paragraph name in the LCP.

END-CHANGE
Terminates the LCP.

An LCP can contain multiple GO TO END-CHANGE statements.

Note: END-CHANGE must not appear as a paragraph name in an LCP.

IF statement

The IF statement controls the execution of statements by testing a condition.

86 ccca

Developing LCPs

For information on conditions, see [’Conditions” on page 84.

Format 1

v
A

»»—IF—condition

»»—Y statement-1

v
A

Format 2

»»—IF—condition »><
»—Y statement-1 >
> ELSE P
»»—Y statement-2 >

statement-1
One or more statements, executed only if the condition is true.

Must appear on a separate line from IF (and ELSE).
Cannot contain another IF statement.

ELSE (Format 2 only)
Specifies that the statements to follow are executed only if the condition is false.

Must appear on a separate line from statement-1 and statement-2.

statement-2 (Format 2 only)
One or more statements, executed only if the condition is false.

Must appear on a separate line from ELSE.

Cannot contain another IF statement.

Note:

1. Periods. The last statement under the control of the IF statement (and only the
last statement) must end with a period.

For example:

Chapter 7. Developing Language Conversion Programs 87

Developing LCPs

IF condition
statement-1
statement-1
statement-1.

IF condition
statement-1
statement-1

ELSE
statement-2
statement-2.

2. statement-1 and statement-2 cannot contain IF statements (IF statements cannot
be nested).

MOVE statement

The MOVE statement copies a numeric or nonnumeric literal or data item to the
data item identifier-2.

Format

A\
A

»»>—MOVE identifier-1 TO—identifier-2 |_ _|
literal .

identifier-1
The data item containing the numeric or nonnumeric value that you want to
copy to identifier-2.

literal
The numeric or nonnumeric literal that you want to copy to identifier-2.
Nonnumeric literals must appear inside enclosing characters.

You can MOVE only:

* Numeric data to numeric data (right-justified)

* Alphanumeric data to alphanumeric data (left-justified)
* Numeric data to alphanumeric data (left-justified)

identifier-1 identifier-2
MOVE type or literal Before After
numeric 21 1025 06021
to 5421 1025 5421
numeric 75421 1025 5421
alphanumeric HE DATE HE
to ICHE DATE ICHE
alphanumeric FICHE DATE FICH
numeric 21 DATE 21
to 5421 DATE 5421
alphanumeric 75421 DATE 7542

Paragraph names

88 ccca

A paragraph is a sequence of statements, beginning with a paragraph name. A

paragraph name is a label that can be referred to by GO TO and PERFORM

statements.

Developing LCPs

The Procedure Division must start with a paragraph name.

Paragraph names must appear on a line by themselves.

Format

A\
A

»>—paragraph-name—.

paragraph-name
A paragraph name:
* Must start with a letter (A through Z)
* Can contain these characters:
0 through 9
A through Z
- (hyphen)
¢ Can contain up to 30 characters
* Cannot end with a hyphen
* Must be immediately followed by a period (.)

PERFORM statement
The PERFORM statement:
* Executes a function a specified number of times (default is once)
* Executes a sequence of paragraphs once only

* Executes a function or sequence of paragraphs one or more times, until a
specified condition is true

Format 1
»»>—PERFORM—function-name »<
|—numeric—ZiteraZ—TIMES—| l——l

Format 2

»»—PERFORM—paragraph-name—THRU—ex i t-paragraph-name |_ _| »<
Format 3

»—PERFORM—[function-name _| »<

paragraph-name—THRU—exit-paragraph-name

A\
A

»»—UNTIL—condition
L]

function-name
An LCP function. For more information, see [’LCP functions” on page 91

numeric-literal
A numeric literal with a maximum value of 12.

Chapter 7. Developing Language Conversion Programs 89

Developing LCPs

paragraph-name
The name of the first paragraph in the LCP to be executed by the PERFORM
THRU statement.

The paragraphs executed by the PERFORM THRU statement can appear in the
LCP source either before or after the PERFORM THRU statement.

paragraph-name must appear in the LCP source before the exit-paragraph-name.
For example:
FIRST-PARA.

SECOND-PARA.
THIRD-PARA.

END-PARA.
EXIT.

PERFORM FIRST-PARA THRU END-PARA
UNTIL condition

exit-paragraph-name
The name of the last paragraph in the LCP to be executed by the PERFORM

THRU statement. This paragraph must contain only an EXIT statement. For
details, see [“EXIT statement” on page 86

UNTIL (Format 3 only)
Must appear on a separate source line from PERFORM.

condition
A simple or combined condition. For details, see|“Conditions” on page 84|

The condition is tested after the function or entire paragraph sequence has
executed.

SUBTRACT statement

The SUBTRACT statement subtracts a number from identifier-2, and stores the
result in the data item identifier-2.

Format

> identifier-1 FROM—identifier-2 <
|:nurneric- l iteraZ:|

identifier-1
The data item containing the numeric value that you want to subtract from
identifier-2.

identifier-2
A numeric data item.

numeric-literal

An unsigned number (with a maximum length of 10 digits) that you want to
subtract from identifier-2.

90 ccca

Developing LCPs

LCP functions

You use LCP functions to manipulate the tokenized source of the program being
converted.

In conversion phase 1 (see [“How CCCA works” on page 4), CCCA breaks apart
the COBOL source program into elements and tokens.

Elements are:
* Character strings in COBOL COPY statements
¢ COBOL comment paragraph lines

All other character strings are tokens.

Note: Comment lines, and the following compiler directives, are not tokenized:
* SKIP1

e SKIP2

e SKIP3

* EJECT

e TITLE

* *CBL

* *CONTROL

In conversion phase 2, CCCA invokes LCPs to examine the tokenized source and
generate change requests.

The LCPs use functions that:

* Retrieve tokenized source

* Bypass token identifiers

* Remove tokenized source

* Modify tokenized source and insert tokens
» Edit tokens

* Construct tokens

* Bypass token processing

The functions write the change requests to the CHANGE data set.

In conversion phase 3, CCCA applies the change requests to the source program.

Using LCP functions

You invoke LCP functions using the PERFORM statement:
PERFORM function-name

You pass values to and from LCP functions using predefined data items.

For example:
PERFORM GET-FIRST-TOKEN

retrieves information about the first token of the program, and places the
information in predefined data items (such as TOKEN-LENGTH and
TOKEN-TEXT) that you can examine and modify.

Similarly:
MOVE 'NEW COMMAND' TO ADD-TEXT
PERFORM REPLACE-TOKEN

Chapter 7. Developing Language Conversion Programs 91

Developing LCPs

92 ccca

replaces the current token in the program with the value you moved to the
predefined data item ADD-TEXT. (Since ADD-TEXT is a predefined data item, you
do not need to include it as an entry in the LCP Data Division.)

The following sections describe the LCP functions, and list their related predefined

data items.

For a_complete list of LCP functions, see |[Appendix F, “List of LCP functions,” on|

For a complete description of each predefined data item, see

[“Predefined data items,” on page 175)

Retrieving tokenized source

The following functions retrieve tokenized source of the program being converted:

LCP function

Description

Retrieve the first token of the program

GET-FIRST-TOKEN
or
GET-FIRST
Retrieve the last token of the program
GET-LAST-TOKEN
or
GET-LAST
GET-TOKEN Retrieve the token or element for the pointer value
currently set
Retrieve the token following the current record or the
GET-NEXT-TOKEN pointer value currently set
or
GET-NEXT

GET-PREVIOUS-TOKEN

Retrieve the token preceding the current record or the
pointer value currently set

or

GET-PREVIOUS

GET-ELEMENT Retrieve the token or element for the pointer value
currently set

GET-NEXT-ELEMENT Retrieve the element or token following the current

record or the pointer value currently set

GET-PREVIOUS-ELEMENT

Retrieve the element or token preceding the current
record or the pointer value currently set

These functions return values in the following predefined data items:

05
05
05

TOKEN-SEQUENCE
TOKEN-POSITION
TOKEN-LENGTH
TOKEN-TYPE-CODE
TOKEN-CHANGE-CODE
TOKEN-LINE-CODE
TOKEN-FLAG
TOKEN-TEXT
TOKEN-SOURCE

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

X(6) .
9(2) .
9(3) .
X(1) .
9(3) .
X(1) .
X(2) .
X(30).
X(1) .

Developing LCPs

TOKEN-POSITION refers to the column number within the program text area
(columns 8 through 72). For example, a TOKEN-POSITION value of 5 refers to
column 12 in the generated source program.

Moving through the tokenized source
The TOKEN-POINTER predefined data item determines the current token of the
program being converted.

You can move through the tokenized source by changing the value of
TOKEN-POINTER. shows how to save the current token pointer, then

move back to that token later in the LCP.

/***

* *
* CONVERA EXAMPLE "SHOW USE OF TOKEN POINTER' *

* 05 TOKEN-POINTER-SAVE PIC 9(7)

PERFORM GET-NEXT-TOKEN.
* SAVE CURRENT TOKEN POSITION
MOVE TOKEN-POINTER TO TOKEN-POINTER-SAVE.

* RE-ESTABLISH TOKEN POSITION
MOVE TOKEN-POINTER-SAVE TO TOKEN-POINTER.
PERFORM GET-TOKEN.

GO TO END-CHANGE.

Figure 36. Saving and repositioning TOKEN-POINTER

Bypassing token identifiers
The BYPASS-IDENTIFIER function bypasses the tokens that qualify the current

token:
LCP function Description
BYPASS-IDENTIFIER Bypass qualifier, subscript, index, and reference

modifier of a data item

This function returns values in the following predefined data items:

05 BYPASSED-REF-TYPES PIC X(3).
05 BYPASSED-REF-QUAL PIC X(1).
05 BYPASSED-REF-SUB PIC X(1).
05 BYPASSED-REF-MOD PIC X(1).

Chapter 7. Developing Language Conversion Programs 93

Developing LCPs

94 ccca

Removing tokenized source

The following functions remove source from the program being generated:

LCP function

Description

REMOVE-TOKEN
or
REMOVE

Remove the last token or element read

REMOVE-NEXT-TOKEN
or
REMOVE-NEXT

Get next token and remove it

REMOVE-CLAUSE

Remove the clause

REMOVE-STATEMENT

Remove the statement

Be careful when using the REMOVE-STATEMENT and REMOVE-CLAUSE
functions. They remove from the token just read (the current token) until the
beginning of a new statement or clause. The beginning of clauses and statements
are defined by the Word type field in the COBOL Reserved Word data set (see

[“Updating the COBOL reserved word Data Set” on page 66).

Modifying tokenized source and inserting tokens

The following functions modify or insert code into the program being generated:

LCP function

Description

INSERT-BEFORE-TOKEN
or
INSERT-BEFORE

Insert new text before the current token

Note: If you insert text before the first token of a line,
the INSERT-BEFORE function inserts the text after the
last token of the preceding line (there is no shuffling of
tokens across the line).

REPLACE-TOKEN
or

Replace the current token

REPLACE
Insert text after the current token providing an
INSERT-AFTER-TOKEN intervening space
or
INSERT-AFTER

SUFFIX-TOKEN
or
SUFFIX

Append text to the current token without an intervening
space

REMOVE-SUFFIX

Remove suffix from token

You pass values to these functions in the following predefined data items:

05 ADD-GROUP.

10 ADD-LENGTH PIC 9(2).
10 ADD-TEXT PIC X(30).
05 STARTING-POSITION PIC 9(2).

Move the new text into ADD-TEXT.

Developing LCPs

STARTING-POSITION refers to the column number within the program text area
(columns 8 to 72) where you want to add the text. For example, a
STARTING-POSITION value of 5 refers to column 12 in the generated source
program.

If you want CCCA to determine the length of the data in ADD-TEXT, set
ADD-LENGTH to zero.

If ADD-TEXT contains imbedded blanks, or you want ADD-TEXT to have trailing
blanks, set ADD-LENGTH to an appropriate value.

Note: Before using these functions, always set ADD-LENGTH to zero or some
other appropriate value. Otherwise, you may inadvertently use a previous, and

inappropriate, value for ADD-LENGTH.

For example:

* Replaces current token with 'GO' (*notx 'GO TO')

kkhkkkkhkkhkhkkhkhkkhhkkhhkhkhkkhkhkkhhkhkhhkhkhkkhkhkkhkhkhkhkkhkhkkhkhkkhkkkkx

* Replace token in same position
MOVE TOKEN-POSITION TO STARTING-POSITION

* ADD-LENGTH zero tells interpreter to determine length
MOVE © TO ADD-LENGTH

* Note imbedded blank - interpreted as end of string
MOVE 'GO TO' TO ADD-TEXT

% Replaces current token with 'GO' (*not* 'GO TO')
PERFORM REPLACE-TOKEN

ke kK KKk ok Kk kK Kk kK Kk Kk ek kK Kk ok KKk kK Kk kK Kk kK Kk Kk kk

* Replaces current token with 'GO TO'
kkhkkkkhkkhkhkkhkhkkhhkkhhkhkhkkhkhkkhhkhkhhkhkhhkhkhkkhkhkhkhkkhkhkkhkhkkkkkkx

MOVE TOKEN-POSITION TO STARTING-POSITION
MOVE 5 TO ADD-LENGTH

MOVE 'GO TO' TO ADD-TEXT

PERFORM REPLACE-TOKEN

Note:

1. If an LCP contains more than one REPLACE-TOKEN function for the same
token, only the last REPLACE-TOKEN has an effect. For example:

MOVE 'COMMAND ONE' TO ADD-TEXT

PERFORM REPLACE-TOKEN

MOVE 'COMMAND TWO' TO ADD-TEXT

PERFORM REPLACE-TOKEN

MOVE 'COMMAND THREE' TO ADD-TEXT

PERFORM REPLACE-TOKEN

has the same effect as:

MOVE 'COMMAND THREE' TO ADD-TEXT
PERFORM REPLACE-TOKEN
2. If the last statement of a COBOL program is COPY, the last character string

(which should be a period) of the main program is considered to be the last
token. It is not the last character string of the COPY member. Therefore, if you
add code to the end of the program, it will appear on the listing immediately
after the COPY statement. The expansion of the COPY module will appear after
the section and not right after the COPY statement.

Chapter 7. Developing Language Conversion Programs 95

Developing LCPs

Editing tokens

The following functions edit tokens in the program being generated:

LCP function Description

SPLIT-LINE Start a new line

MAINTAIN-LINE-POSITION Try to write in the same column of the line if there is
enough space

COMMENT Put an asterisk (*) in column 7

DIAGNOSTIC Write the contents of the ADD-TEXT predefined data
item in the diagnostic area

EJECT Put a slash (/) in column 7

EDIT-MESSAGE Write a message identifier, return code, and message

text in the diagnostic area, according to the value of
the MESSAGE-ID predefined data item

DIAGNOSTIC function

The DIAGNOSTIC function causes message text to be written to the Diagnostic
listing. Use this function to write messages that do not appear in the Message file.

Before calling DIAGNOSTIC, move the message text to the ADD-TEXT predefined
data item.

For example:

MOVE 'DIAGNOSTIC MESSAGE' TO ADD-TEXT
PERFORM DIAGNOSTIC

writes 'DIAGNOSTIC MESSAGE' in the diagnostic message area of the statement it
applies to. (The diagnostic message area is on the right hand side of the Diagnostic
listing.) The message is repeated in the message summary at the end of the listing.

Note: CCCA assigns the message identifier ABJ9999 to DIAGNOSTIC messages.

EDIT-MESSAGE function

The EDIT-MESSAGE function causes messages to be written to the Diagnostic
listing. Unlike the DIAGNOSTIC function (where you specify the message text
directly), with the EDIT-MESSAGE function you refer to a message identifier in the
Message file:

MOVE 'ABJ6018' TO MESSAGE-ID
PERFORM EDIT-MESSAGE

The message text appears in the diagnostic message area of the statement it applies
to. (The diagnostic message area is on the right hand side of the Diagnostic listing.)
The message is repeated in the message summary at the end of the listing. For

more information on the Message file, see [“Updating the message file” on page 73

Constructing tokens

96 ccca

The following functions construct tokens:

LCP function Description

DETERMINE-LENGTH Determines the length of the character string in
ADD-TEXT, and puts the result in ADD-LENGTH

MOVE-LCP Move characters

Developing LCPs

LCP function Description
STRING-LCP Concatenate character strings
UNSTRING-LCP Break apart a character string into one or more

character strings

CONVERT-ALPHA-NUMERIC Convert an alphanumeric string into a numeric string

DETERMINE-LENGTH function

The DETERMINE-LENGTH function determines the length of the character string
you have moved to the ADD-TEXT predefined data item, and puts the result in the

ADD-LENGTH predefined data item.

For example, when you code:

MOVE 'ACCESS' TO ADD-TEXT
PERFORM DETERMINE-LENGTH

you use these predefined data items:

10 ADD-LENGTH PIC 9(2).
10 ADD-TEXT PIC X(30).

CCCA analyzes the contents of ADD-TEXT:

ADD-TEXT A|C|C|E|S|S

and produces the result:
ADD-LENGTH = 06

ADD-LENGTH is determined by the position of the first blank character in
ADD-TEXT.

MOVE-LCP function

The MOVE-LCP function copies characters from one data item to another.

The MOVE-LCP functions uses these predefined data items:

05 INPUT-TEXT PIC X(30).
05 STARTING-CHARACTER PIC 9(2).
05 RECEIVING-CHARACTER PIC 9(2).
05 LENGTH-OF-MOVE PIC 9(2).
05 OUTPUT-TEXT PIC X(30).

For example, these statements:

MOVE 'SPECIAL' TO INPUT-TEXT

MOVE 'INTERPRETER' TO QUTPUT-TEXT

MOVE 4 TO STARTING-CHARACTER
MOVE 8 TO RECEIVING-CHARACTER
MOVE 4 TO LENGTH-OF-MOVE

set these values:
LENGTH-OF-MOVE = 4

INPUT-TEXT SIP|E[C|T|A|L

t
L STARTING-CHARACTER = 4

OUTPUT-TEXT [TIN|T|E|R|P|R|E|T|E|R]

Chapter 7. Developing Language Conversion Programs

97

Developing LCPs

98 ccca

L RECEIVING-CHARACTER = 8

With the above values, PERFORM MOVE-LCP produces:
OUTPUT-TEXT ‘I|N‘T|E‘R‘P‘R‘C|I‘A‘L‘

STRING-LCP function
The STRING-LCP function:

1. Concatenates character strings in the STRING-WORD-nn predefined data items
(where nn is 00 through 10)

2. Puts the concatenated string in the STRING-TEXT predefined data item

3. Puts the length of the concatenated string in the STRING-LENGTH predefined
data item

The STRING-LCP function uses these predefined data items:

05 STRING-TEXT PIC X(30).
05 STRING-DELIMITER PIC X(1).
05 STRING-LENGTH PIC 9(2).
01 STRING-WORDS.
05 STRING-WORD-01 PIC X(30).
05 STRING-WORD-02 PIC X(30).
05 STRING-WORD-03 PIC X(30).
05 STRING-WORD-04 PIC X(30).
05 STRING-WORD-05 PIC X(30).
05 STRING-WORD-06 PIC X(30).
05 STRING-WORD-07 PIC X(30).
05 STRING-WORD-08 PIC X(30).
05 STRING-WORD-09 PIC X(30).
05 STRING-WORD-10 PIC X(30).

For example:

* First, initialize STRING-WORDS-nn

* by moving SPACE to STRING-WORDS
MOVE SPACE TO STRING-WORDS
MOVE 'COPY' TO STRING-WORD-01
MOVE 'RECORD' TO STRING-WORD-02
MOVE '-' TO STRING-WORD-03
MOVE 'NAME' TO STRING-WORD-04
MOVE SPACE TO STRING-DELIMITER
PERFORM STRING-LCP

concatenates these predefined data items:

STRING-WORD-01 clolp|y _J_J (30 characters)
STRING-WORD-02 RIE|C|O|R|D
STRING-WORD-03 -

STRING-WORD-04 N[A|M|E

STRING-WORD-05

[

STRING-WORD-06

Developing LCPs
STRING-WORD-07
STRING-WORD-08
STRING-WORD-09

STRING-WORD-10

producing these results:
STRING-TEXT |C|O‘P|Y‘R|E|C‘O|R‘D\-|N|A|M‘E|

STRING-LENGTH = 15

Note: STRING-DELIMITER contains the character that the STRING-LCP function
uses to determine the end of each STRING-WORD-nn character string. The default
STRING-DELIMITER value is SPACE.

UNSTRING-LCP function

The UNSTRING-LCP function breaks apart the character string in the
STRING-TEXT predefined data items, and stores the parts in the
STRING-WORD-nn predefined data items.

The UNSTRING-LCP function uses these predefined data items:

05 STRING-TEXT PIC X(30).
05 STRING-DELIMITER PIC X(1).
05 STRING-LENGTH PIC 9(2).
01 STRING-WORDS.
05 STRING-WORD-01 PIC X(30).
05 STRING-WORD-02 PIC X(30).
05 STRING-WORD-03 PIC X(30).
05 STRING-WORD-04 PIC X(30).
05 STRING-WORD-05 PIC X(30).
05 STRING-WORD-06 PIC X(30).
05 STRING-WORD-07 PIC X(30).
05 STRING-WORD-08 PIC X(30).
05 STRING-WORD-09 PIC X(30).
05 STRING-WORD-10 PIC X(30).

For example:

MOVE 'DA-3340-I-CLIENT' TO STRING-TEXT
MOVE '-' TO STRING-DELIMITER
PERFORM UNSTRING-LCP

breaks apart the character string:
STRING-TEXT ‘D|A‘-|3‘3‘4‘0‘-|I‘-‘C‘L‘I|E‘N|T‘

into:

STRING-WORD-01 D|A _J_J (30 characters)
STRING-WORD-02 3]3(|4]0 _J_J
STRING-WORD-03 I _J_J

Chapter 7. Developing Language Conversion Programs 99

Developing LCPs

STRING-WORD-04 CIL|T[E|N|T

STRING-WORD-05
STRING-WORD-06
STRING-WORD-07
STRING-WORD-08
STRING-WORD-09

STRING-WORD-10

FEEEEEE

LLEEL
L
LT
LLELL
L

Note: Before breaking apart STRING-TEXT, the UNSTRING-LCP function
initializes the STRING-WORD-nn predefined data items to SPACES.

CONVERT-ALPHA-NUMERIC function

The CONVERT-ALPHA-NUMERIC function converts the left-aligned character
string in the LCP-ALPHA predefined data item to a numeric value, and stores the
numeric value in the LCP-NUMERIC predefined data item.

The CONVERT-ALPHA-NUMERIC function uses these predefined data items:

05 LCP-ALPHA PIC X(10).
05 LCP-NUMERIC PIC 9(10).

For example:

MOVE '1234' TO LCP-ALPHA
PERFORM CONVERT-ALPHA-NUMERIC

converts the alphanumeric string:
LCP-ALPHA |1|2‘3|4| | | | | | }

to the numeric string:
LCP-NUMERIC ‘0|0‘0|0‘0‘0‘1‘2|3‘4‘

BYPASS-POINTER function
To bypass processing relating to the current token, use the BYPASS-POINTER

Function:
LCP function Description
BYPASS-OPTION Bypass the conversion process associated with the

token currently in storage

If the current token:
* Is after the token that invoked the LCP, and
* Has a change code that will invoke its own LCP

100 ccca

Developing LCPs

then the invocation of the BYPASS-POINTER function will result in that LCP not
being invoked for the current token.

The BYPASS-POINTER function updates the change code in the current token to
994, causing the LCP processing to be bypassed.

Manipulating files

During conversion, CCCA uses two physical files: Control and Work.

The Control file contains five record types:

OPTION
COBOL source program member name and conversion options.

PROGRAM
Program name (as defined inside the COBOL program) before and after
conversion, and conversion status.

FILE Information about each file (such as organization and access mode) used in
the COBOL program.

CALL Details of CALL statements in the COBOL program.
COPY Details of COPY statements in the COBOL program.

The Work file contains thirteen record types:

KEY KEY clause information (if supplied) for each file used in the COBOL
program.

RECORD
Records names linked to each file used in the COBOL program.

WORK-nn
(where nn is 01 through 10) Storage for miscellaneous conversion
information.

CICS Details of BLL statements in the COBOL program.

CCCA makes selected information in these records available to you as predefined
data items.

One of the predefined data items for each record is an access key that you can use
to retrieve or update a specific record. (Except KEY, which is linked to the FILE
record, and OPTION, which is a single record.)|Figure 37 on page 102 shows the
relationships between these records.

Chapter 7. Developing Language Conversion Programs 101

Developing LCPs

OPTION record Single record - no access key
No functions

PROGRAM record Access key:
PROGRAM-NAME
| Functions:
| ADD-PROGRAM

FILE record COPY record CALL record
I | |
| | |
Access key: Access key: Access key:
INTERNAL-FILE-NAME COPY-NAME CALL-NAME
Functions: Functions: Functions:
READ-FILE ADD-COPY ADD-CALL
ADD-FILE
UPDATE-FILE
SETLL-FILE
READ-NEXT-FILE

KEY record RECORD record WORK-nn record CICS record
| | |
| | |
Single record - Access key: Access key: Access key:
no access key RECORD-NAME WORK-KEY-nn BLL-NAME
Functions: Functions: Functions: Functions:
READ-KEY ADD-RECORD READ-WORK-nn READ-CICS
ADD-KEY SETLL-RECORD ADD-WORK-nn
RETRIEVE-FILE UPDATE-WORK-nn
READ-NEXT-RECORD SETLL-WORK-nn

READ-NEXT-WORK-nn

Figure 37. Control and work file record relationships

Control file

Here are the details of the control file.

OPTION record

The OPTION record contains the conversion options, available as these predefined

data items:
05 LITERAL-SEPARATOR PIC X.
05 OPTION-01 PIC X.
05 OPTION-02 PIC X.
05 OPTION-03 PIC X.
05 OPTION-04 PIC X.
05 OPTION-05 PIC X.

102 ccca

Developing LCPs

05 OPTION-06 PIC X.
05 OPTION-07 PIC X.

05 OPTION-08 PIC X.

05 OPTION-09 PIC X.

05 OPTION-10 PIC X.

05 OPTION-11 PIC X.

05 OPTION-12 PIC X.

05 OPTION-13 PIC X.

05 OPTION-14 PIC X.

05 OPTION-15 PIC X.

05 MEMBER-NAME PIC X(10).
05 COBOL-STANDARD PIC X(5).

05 TARGET-LANGUAGE PIC X(5).

05 OPTION-CICS PIC X.

05 COBOL-TYPE PIC X(6).

05 DATE-FORMAT PIC X(8).

CCCA gets this information from the details you enter on the Conversion Options
panels (see [“Setting conversion options” on page 19).

PROGRAM record
Each program CCCA converts has a PROGRAM record. Its access key is the
PROGRAM NAME defined in the COBOL program.

The PROGRAM record exists to contain statistics for the Program /File and
File/Program reports (for details, see [Chapter 5, “Conversion reports and the|
fconversion log,” on page 49). You cannot read this record from an LCP,

LCP function Description

ADD-PROGRAM Add a PROGRAM record using the current values in the
OPTION record

The PROGRAM record contains these predefined data items:

05 PROGRAM-STATUS PIC X(10).
05 PROGRAM-NAME PIC X(10). <« Access key
05 OLD-PROGRAM-NAME PIC X(10).

The PROGRAM record also contains:

* The conversion options CCCA used to convert each program (in a similar format
to the current conversion options stored in the OPTION record)

* A program conversion revision count

The ADD-PROGRAM function:

* Updates (or adds, if no record exists) a PROGRAM record for the
PROGRAM-NAME you specify with the current conversion options (from the
OPTION record)

* Increments the PROGRAM record revision count by one

FILE record

The FILE record contains information about each file (such as organization and
access mode) used in a COBOL program.

There is one FILE record for each each file defined in the COBOL program.

LCP function Description
READ-FILE Retrieve a specific FILE record

Chapter 7. Developing Language Conversion Programs 103

Developing LCPs

LCP function Description

UPDATE-FILE Update a specific FILE record
ADD-FILE Add a FILE record
SETLL-FILE Position at the first FILE record
READ-NEXT-FILE Read the next FILE record

These functions give you access to the following predefined data items:

05 ORGANIZATION-FILE-MODE PIC X.

05 ACCESS-FILE-MODE PIC X.

05 SEQUENCE-STATUS-NO PIC 9(2).

05 EXTERNAL-FILE-NAME PIC X(10).

05 INTERNAL-FILE-NAME PIC X(30). < Access key
05 UPDATE-FILE-FLAG PIC X.

05 ASCII-FILE PIC X.

05 FILE-CONVERSION PIC X.

05 OLD-ORGANIZATION-FILE-MODE PIC X.

05 VSAM-ORGANIZATION PIC X.

CALL record
There is a CALL record for each CALL statement in the COBOL program.

LCP function Description

ADD-CALL Add a CALL record

This function gives you access to the following predefined data item:
05 CALL-NAME PIC X(30). <« Access key

CCCA uses the CALL file records to generate the Call/Program report and the
Program/Call report. Performing the ADD-CALL function results in a CALL
record being generated identifying the CALL-NAME provided as a sub-program
called by the program being converted.

COPY record
There is a COPY record for each COPY statement in the COBOL program.

LCP function Description

ADD-COPY Add a COPY record

This function gives you access to the following predefined data items:

05 COPY-NAME PIC X(10). <« Access key
05 COPY-LOCATION PIC X(3).
05 ASSOCIATE-NAME PIC X(30).

CCCA uses the COPY records to generate the Copy/Program and Program/Copy
reports. The ADD-COPY function adds a COPY record that identifies the contents
of the COPY-NAME predefined data item as a COPY member in the program
being converted.

Work file

104 ccca

Here are the details of the work file.

Developing LCPs

KEY record

When the KEY clause is defined in a file description, a KEY file record is
automatically generated, linking the key to the active FILE record.

LCP function Description
READ-KEY Retrieve a KEY record for the active file
ADD-KEY Add or update a KEY record for the active file

These functions give you access to the following predefined data items:

05 NOMINAL-KEY-NAME PIC X(30).
05 RECORD-KEY-NAME PIC X(30).
05 RELATIVE-KEY PIC X(30).
05 FILE-STATUS-NAME PIC X(30).

RECORD record

Within each file a record name can be defined allowing several records to be linked
to the active FILE record.

One record per 01 level data in File Description (FD).

LCP function Description

ADD-RECORD Add a RECORD record for the active file

SETLL-RECORD Position at the beginning of the RECORD file for the active
file.

READ-NEXT-RECORD Read next RECORD record for the active FILE record

RETRIEVE-FILE Retrieve the FILE record using a RECORD-NAME (first

possible file).

These functions give you access to the following predefined data item:
05 RECORD-NAME PIC X(30). <« Access key

WORK-nn records

During LCP execution, you can save conversion information WORK records.

LCP function Description

READ-WORK-nn Read a WORK-nn record
UPDATE-WORK-nn Update a WORK-nn record

ADD-WORK-nn Add a WORK-nn record

SETLL-WORK-nn Set to the beginning of the WORK-nn records
READ-NEXT-WORK-nn Read next WORK-nn record

These functions give you access to the following predefined data items:

05 WORK-KEY-nn PIC X(30). <« Access key
05 WORK-TEXT-nn PIC X(30).
05 WORK-NUMERIC-nn PIC 9(7).
05 WORK-TYPE-nn PIC X(3).
05 WORK-TEXT2-nn PIC X(30).
05 WORK-NUMERIC2-nn PIC 9(7).
05 WORK-TYPE2-nn PIC X(3).

Note:

Chapter 7. Developing Language Conversion Programs 105

Developing LCPs

nn is 01 through 10.

WORK records 01 to 03 are available for user-written LCPs.

WORK record 04 is also available if MLE conversions are not required.
WORK records 05 to 10 are reserved for use by CCCA.

The supplied DEBUGGING LCP contains an example of how to use WORK
records.

CICS record

For each BLL statement defined in the converted COBOL program, there is a
corresponding record.

ok

LCP function Description

READ-CICS Read the CICS record that is used to relate the BLL to the 01 level
data area as mapped in the Linkage Section.

This function gives you access to the following predefined data items:

01 CICS-REC.
05 BLL-NAME PIC X(30). <« Access key
05 CICS-RECORD-NAME PIC X(30). (Name of data area pointed to by BLL)

Using LCPs

Here is how you use LCPs.

Controlling LCP invocation

106 ccca

The name of the LCP that CCCA invokes to convert a language element is
determined by the value of the TOKEN-CHANGE-CODE predefined data item.

During phase 1 (tokenization of the input source program) a TOKEN record is
written for every tokenized word in the source program. As each word is
tokenized, the word is used as a search argument to search the COBOL Reserved
Word data set. If a match is found, the change code in the matching data set entry
is stored in the TOKEN-CHANGE-CODE field of the TOKEN record (every word
in the COBOL Reserved Word data set has a change code in the range 000 through
999). If no match is found, a value of 999 is stored in the TOKEN-CHANGE-
CODE.

During phase 2, CCCA uses the value in the TOKEN-CHANGE-CODE field of
each TOKEN record to determine the name of the LCP that is invoked to process
the tokenized word. The name of the LCP is determined as follows:

e If the value in the TOKEN-CHANGE-CODE field is 990, the name of the LCP is
the same as the tokenized word. For example, in the supplied COBOL Reserved
Word data set, the word OTHERWISE has a change code of 990, which indicates
that the LCP named OTHERWISE is to be invoked. One of the supplied LCPs is
an LCP named OTHERWISE that is used to convert the reserved word
OTHERWISE.

e If the value in the TOKEN-CHANGE-CODE field is 999, no LCP is invoked to
convert the language element. For example, in the supplied Reserved Word data
set, the word ALTERNATE has a change code of 999. That is, no LCP is invoked
to convert the ALTERNATE language element.

o If the TOKEN-CHANGE-CODE field has a value other than 990 or 999, the
name of the LCP is LCPnnn, where nnn is the value of the TOKEN-CHANGE-
CODE field. For example, in the supplied Reserved Word data set, the reserved

Developing LCPs

words UPSI-0 through UPSI-7 have a change code of 850. That is, the supplied
LCP named LCP850 is invoked to process conversion of these reserved words in

a source program. Note that one LCP can be used to convert more than one
reserved word.

For details on adding new words to the supplied COBOL Reserved Word file and

setting change codes, see [“Updating the COBOL reserved word Data Set” on page]

Processing LCPs

is an example of source code for the OTHERWISE LCP. During
conversion, each time a token with the value OTHERWISE is found within the
COBOL source program, the OTHERWISE LCP is executed. The purpose of this
LCP is to change the COBOL reserved word OTHERWISE to ELSE.

****-k***0009 1000

* *00002000
* CONVERA OTHERWISE 'REPLACE OTHERWISE BY ELSE' *00003000
* *00004000
* REPLACE OTHERWISE BY ELSE *00005000
* *00006000
hkhkkhkhFhhrhkrhrhdrkhkhkxh *hkhkkhkhrhkdrhkhkkhkkkx *hkhkkkkhk **x%%x00007000
* LICENSED MATERIALS - PROPERTY OF IBM 00008000
* 5785-ABJ 5785-CCC 5648-B05 5686-A07 00008800
* (C) COPYRIGHT IBM CORP. 1982, 1998. ALL RIGHTS RESERVED. 00009600
* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, 00010400
* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP 00011200
* SCHEDULE CONTRACT WITH IBM CORP. 00012100
00013000

OTHER-WISE-010 . 00014000
IF COBOL-TYPE NOT = 'DOS/VS' 00015000

AND COBOL-TYPE NOT = '0S/VS' 00015500

GO TO END-CHANGE. 00016000

IF WHERE-USED IS NOT EQUAL TO 'PR' 00017000

GO TO END-CHANGE. 00018000

MOVE 'O4ELSE' TO ADD-GROUP . 00019000
PERFORM REPLACE . 00020000

MOVE 'ABJ6021' TO MESSAGE-ID. 00021000
PERFORM EDIT-MESSAGE. 00022000

GO TO END-CHANGE . 00023000

Figure 38. OTHERWISE LCP source code

When an LCP is compiled, CCCA produces intermediate text and a listing. The
intermediate text is written to the LCP library (also known as the DRIVEN data
set). The listing that is produced can be used during debugging. The statement
numbers contained in the listing are the statement numbers referred to in LCP
traces.

[Figure 39 on page 108 is an example of the OTHERWISE LCP listing produced by

the LCP compiler.

Chapter 7. Developing Language Conversion Programs

107

Developing LCPs

5648-B05 V2R1

STMT SEQNBR A 1 B

- IBM COBOL CONVERSION AID - SAMPLE RUN

e 2 0 e LCP SOURCE STATEMENTS

B e e e R R T R R S R R S R R R S E R L L

CONVERA OTHERWISE 'REPLACE OTHERWISE BY ELSE'

REPLACE OTHERWISE BY ELSE

OTHER-WISE-010 .
IF COBOL-TYPE NOT = 'DOS/VS'
AND COBOL-TYPE NOT = '0OS/VS'

MOVE

GO TO END-CHANGE.

GO TO END-CHANGE.
"04ELSE' TO ADD-GROUP .

PERFORM REPLACE .

2
3
4
5
6 IF WHERE-USED IS NOT EQUAL TO 'PR'
7
8
9
10

MOVE

'ABJ6021' TO MESSAGE-ID.

11 PERFORM EDIT-MESSAGE.

12 GO TO END-CHANGE .
TEXT DESCRIPTION - REPLACE OTHERWISE BY ELSE
LCP PROGRAM NAME - OTHERWISE
TABLE DRIVEN CORE SIZE - 290

Figure 39. OTHERWISE LCP compilation listing

L

EE R R R R R R R R R R S S

LICENSED MATERIALS - PROPERTY OF IBM
5785-ABJ 5785-CCC 5648-B05 5686-A07
(C) COPYRIGHT IBM CORP. 1982, 1998. ALL RIGHTS RESERVED.
US GOVERNMENT USERS RESTRICTED RIGHTS - USE,
DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP
SCHEDULE CONTRACT WITH IBM CORP.

Tokenization

108 ccca

During conversion phase 1 (see ['How CCCA works” on page 4), the COBOL

source program is analyzed in terms of character strings called tokens. You can
print a listing of the tokenization by setting the Generate tokenization listing field

on Conversion Options panel 1 (see [Figure 9 on page 19) to Y.

[Figure 40 on page 109|is an example of the tokenization of a COBOL source

program.

002160 EXAMINE FILE-A-RECORD TALLYING ALL ".".
EXAMINE ::cczssocscssroossszooooee
FILE-A-RECORD ::
TALLYING

002170 DISPLAY FILE-A-RECORD " COUNT OF " TALLY.
DISPLAY
FILE-A-RECORD

002180 IF (TALLY = 3)
IF ::::

) :
002190 AND (FILE-A-RECORD .B.D.F")
AND :::
FILE-A-
)
002200 THEN DISPLAY " TST-504-A2 WAS SUCCESSFUL
THEN ::::::
DISPLAY :
" TST-504-A2 WAS SUCCESSFUL"
002210 OTHERWISE MOVE "Y" TO CONVERSION-ERROR-SWITCH
OTHERWISE ::::
MOVE
nyn
CONVERSION-ERROR-SWITCH ::
002220 DISPLAY " TST-504-A2 WAS UNSUCCESSFUL".
DISPLAY
002230 DISPLAY " END TEST PIR-025-A SUCCESSFUL RUN ".
DISPLAY
" END TEST PIR-025-A SUCCESSFUL RUN "
002240 STOP RUN.
STOP

Figure 40. Section of a tokenized COBOL source program

SEQ-NO/POS/LNGTH/TYPE/CODE/FLAG

01772202

002160
002160
002160
002160
002160

............... 002160

01772300
1 002170
002170
002170
002170
11 002170
01772402
002180
002180
002180
002180
002180
1 002180
01772502
1 002190
002190
002190
002190
002190
002190
01772602
002200
002200
1 002200
01772702
002210
002210
002210
002210
i 002210
01772802
:: 002220
002220
002220
01772902
1 002230
002230
002230
01773002
1 002240
002240
002240

The main features of the listing are:

The report headings:
SEQ-NO

TOKEN-SEQUENCE
POS TOKEN-POSITION

LNGTH

TOKEN-LENGTH
TYPE TOKEN-TYPE-CODE
CODE TOKEN-CHANGE-CODE

FLAG TOKEN-FLAG

05
13
27
36
40
43

05
13
27
41
46

007
013
008
003
003
001

007
013
013
005
001

002
001
005
001
001
001

003
001
013
001
008
001

004
007
031

009
004
003
002
023

007
033
001

007
037
001

004
003
001

rF=E=E===

990
000
000
990
000
000

999
000
000
000
000

999
000
000
997
000
000

000
000
000
997
000
000

990
999
000

990
851
000
000
000

999
000
000

999
000
000

999
000
000

03

23

03

03
23

03

23

23

03

Developing LCPs

3
3
3
3
3
3

See|Appendix E, “Predefined data items,” on page 179 for a description of

these fields.

2] Input program source line.

H Tokenized source. There is a record written to the TOKEN data set for each

token.

Chapter 7. Developing Language Conversion Programs

109

Developing LCPs

Note: CCCA does not tokenize literals which are greater than 30 chars long. The
tokenization report reflects this fact with a filler of asterisks as shown in the
following example:

01 TEST-LINE-2 PIC X(80) VALUE 00311001
01 seccoscssssrssrsrssrsorsrsosarssrsssrssssseessy 000410 01 002 N 990
TEST-LINE-2 s:eescssscssscssssssssssscssesszs: 000410 05 011 W 000
PIC seseescssrssssrssssssssssssas: 000410 17 003 P 990 02
X(80) ::sesezssssssszssseziass: 000410 21 005 P 000
VALUE :::ecsscrcsscsssciss: 000410 27 005 W 990 02
>> "BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB". 00312006
S>> kkkkkkkkkkkRr R kA kA Rk kI Rk kkkkrkkxkxx s 000420 05 036 L 864 00

Losriiiiiii: 000420 41 001 000

Debugging LCPs

To aid in the debugging of LCPs, a facility is provided that will generate trace
output for specific LCPs.

To activate debugging for one or more LCPs, use the Delete/Debug LCP panel (see
[Figure 33 on page 72).

An example of the OTHERWISE LCP trace is shown in
The columns of this listing are described below.

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN 04/13/98 12:15:24 PAGE 1
1
*CONVER:OTHERWISE *TEXT:REPLACE OTHERWISE BY ELSE *DATE:041398
12915
a B O 83
LCP LCP 1D

TOKEN-TEXT STMT OPCODE FILE Fove was 2 o0 o3 .. [5 6 7
OTHERWISE 3 IFEQA
OTHERWISE 4 TFEQA
OTHERWISE 6 IFEQA
OTHERWISE 8 MOVE
OTHERWISE 9 RP

CHANGE 002210086 OAELSE o1 v

CHANGE 002210085 Y
OTHERWISE 10 MOVE
OTHERWISE 11 EDMSG

CHANGE 002210083 OOOTHERWISE REPLACED BY ELSE YABJ602100
OTHERWISE 12 GOTO

Figure 41. Trace of OTHERWISE LCP execution

110 ccca

LCP Name
The name of the LCP that is currently in control. This is the program name
or LCP-identifier provided on the CONVER statement of the LCP.

H TOKEN-TEXT
The value of the token currently being processed.

El LCP Statement Number
The LCP statement number of the LCP being executed. This can be
matched to the statement numbers from the compilation listing for the
LCP.

[LCP OP Code
The instruction code of the LCP function associated with the LCP
statement number being executed. See |[Appendix F, “List of LCP functions,”]

B Logical File and Record
This identifies the record and the record used by the LCP instruction being
executed.

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN
OSEQNBR-A 1 B.. ... 2 e . COBOL SOURCE STATEMENTS . 6
0

024000 MOVE ZERO TO TALLY

*QLD** EXAMINE FILE-A-RECORD TALLYING ALL ".".

024100 INSPECT FILE-A-RECORD TALLYING TALLY FOR ALL ".".
024200 DISPLAY FILE-A-RECORD " COUNT OF " TALLY.

024300 IF (TALLY = 3)

024400 AND (FILE-A-RECORD = ".B.D.F")

024500 THEN DISPLAY " TST-504-A2 WAS SUCCESSFUL"
*QLD** OTHERWISE MOVE "Y" TO CONVERSION-ERROR-SWITCH
024600 ELSE MOVE "Y" TO CONVERSION-ERROR-SWITCH
024700 DISPLAY " TST-504-A2 WAS UNSUCCESSFUL".
024800 DISPLAY " END TEST PIR-025-A SUCCESSFUL RUN ".
*QLD** STOP RUN.

024900 STOP RUN.

Developing LCPs

The result of OTHERWISE LCP execution is shown in

025000 END PROGRAM PIRO25A.

7 .IDENTFCN

01772202
01772202
01772300
01772402
01772502
01772602
01772702
01772702
01772802
01772902
01773002
01773002

PIRO25A

04/13/98 12:15:53 PAGE 7

0LD/SQ S MSGID SEV ---DIAGNOSTICS --

017721
017722
017722
017723
017724
017725
017726
017727
017727
017728
017729
017730

017730

ABJ6019 00 EXAMINE REPLACED BY INSPECT

ABJ6021 00 OTHERWISE REPLACED BY ELSE

N L *
* END OF COBOL CONVERSION *
* 5648-B05 COBOL CONVERSION«

Figure 42. Section of the Diagnostic listing showing result of OTHERWISE conversion

Processing differences between tokens and elements

The following section explains the differences that exist between the processing of
tokens and elements. Differences exist in the way they are tokenized and how they
are retrieved from the TOKEN data set. The differences are shown through the use

of an LCP and a sample COBOL program.

[Figure 43 on page 112|shows the LCP TKNTEST.

When TKNTEST is invoked, it uses the GET-NEXT-ELEMENT and
GET-NEXT-TOKEN functions. These two functions show the difference in the way
tokens and elements are treated by functions that retrieve records from the TOKEN

data set.

Chapter 7. Developing Language Conversion Programs 111

Developing LCPs

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN 04/14/98 12:40:36

STMT SEQNBR A 1 B.. ... 2 ... LCP SOURCE STATEMENTS ... 6 7

—
*

CONVERA TKNTEST 'SHOW DIFFERENCE BETWEEN TOKEN AND ELEMENT'=

*

TO SHOW THE DIFFERENCES BETWEEN PROCESSING ELEMENTS AND
TOKENS, THIS LCP WILL:
1. SAVE THE CURRENT TOKEN/ELEMENT POSITION
. READ 20 ELEMENTS
REPOSITION TO THE SAVED POSITION
. READ 20 TOKENS
. REPOSITION TO THE SAVED POSITION
EXIT

b I R
L

OB W

2 05 SAVE-POINTER PIC 9(7).
3 SHOW-USAGE.
4 MOVE TOKEN-POINTER TO SAVE-POINTER.
5 PERFORM GET-NEXT-ELEMENT 10 TIMES.
6 PERFORM GET-NEXT-ELEMENT 10 TIMES.
7 MOVE SAVE-POINTER TO TOKEN-POINTER.
8 PERFORM GET-TOKEN.
9 PERFORM GET-NEXT-TOKEN 10 TIMES.
10 PERFORM GET-NEXT-TOKEN 10 TIMES.
11 MOVE SAVE-POINTER TO TOKEN-POINTER.
12 GO TO END-CHANGE.
TEXT DESCRIPTION - SHOW DIFFERENCE BETWEEN TOKEN AND ELEMENT
LCP PROGRAM NAME - TKNTEST
TABLE DRIVEN CORE SIZE - 385

Figure 43. TKNTEST LCP compilation listing

shows the COBOL program SAMPLPRG which is written to show the
differences that exist between the processing of tokens and elements.

In the program, the word TKNTEST is used to show how tokenization affects the
invoking of LCPs. The program also provides examples of the two types of
element.

IDENTIFICATION DIVISION.

PROGRAM-ID. SAMPLPRG.

DATE-WRITTEN. 05/05/1998
Uses the LCP TKNTEST to show the difference between
TOKENS and ELEMENTS.

ENVIRONMENT DIVISION.
SKIP2

DATA DIVISION.

FILE SECTION.
WORKING-STORAGE SECTION.

77 PRG-NAME PIC X(10) VALUE 'SAMPLPRG'.
77 TKNTEST PIC X(10).

77 PRG-NAME1 PIC X(10) VALUE SPACES.
COPY TSTMEMBR REPLACING TEMP-FLD BY TKNTEST.
EJECT

PROCEDURE DIVISION.
* comments are not tokenized
START-HERE.
IF PRG-NAME1 = SPACES
MOVE PRG-NAME TO PRG-NAME1.
DISPLAY 'TEST COMPLETE '.
STOP RUN.

Figure 44. Source of program to be converted
The word TKNTEST occurs three times in the program SAMPLPRG:

112 ccca

Developing LCPs

In a comment paragraph
2] In a data item description entry
H in a COBOL COPY statement

As you will see, not all occurrences of the word TKNTEST result in the LCP
TKNTEST being invoked.

is the tokenized source of the program SAMPLPRG and shows token and

element tokenization.

SEQ-NO/POS/LNGTH/TYPE/CODE/FLAG

IDENTIFICATION DIVISION
IDENTIFICATION :::::::
DIVISION

000010 01 014 W 990 01
000010 16 008 W 990
000010 24 001 000

PROGRAM-ID. SAMPLPRG.
PROGRAM_ID R R R R R R R R R R R R R R R N N N N s . 000020 01 010 W 990 01
: : 000020 11 001 000
000020 14 008 W 000
000020 22 001 000

SAMPLPRG

000030 01 012 W 856 01
000030 13 053 * 000

000040 01 065 * 000
000050 01 065 * 000

ENVIRONMENT DIVISION.
ENVIRONMENT 000070 01 011 W 990 01
000070 13 008 W 990

000070 21 001 000

SKIP2
DATA DIVISION.

000090 01 004 W 999 21
000090 06 008 W 990
000090 14 001 000

DIVISION :

FILE SECTION.
FILE 000100 01 004 W 999 01
000100 06 007 W 990

000100 13 001 000

SECTION

WORKING-STORAGE SECTION
WORKING-STORAGE ::::::
SECTION

000110 01 015 W 990 01
000110 17 007 W 990
000110 24 001 000

77 PRG-NAME PIC X(10) VALUE 'SAMPLPRG'
77 ::: R
PRG-NAME

000120 01 002
000120 05 008
PIC :: : 000120 24 003
X(10) :::z::: : 000120 28 005
: 000120 36 005 W 990 02
000120 42 010 L 864 00
000120 52 001 000

990
000
990 02
000

r=UovUuU==

' SAMPLPRG

77 TKNTEST PIC X(10).
77 R e : 00013001 002
TKNTEST ::zzeecozcee: : 000130 05 007
: 000130 24 003

990
000 H
990 02

: 000130 28 005 P 000
Siiiiirrrziiiiiiiiiiiiziziiiiiii: 000130 33 001 000

oo ==

X(10)

77 PRG-NAME1 PIC X(10) VALUE SPACES.
000140 01 002 N 990
PRG-NAME1 : 000140 05 009 W 000
000140 24 003 P 990 02
000140 28 005 P 000
000140 36 005 W 990 02
000140 42 006 W 999

000140 48 001 000

Figure 45. Tokenization of the COBOL source program containing tokens and elements (Part 1 of 2)

Chapter 7. Developing Language Conversion Programs

113

Developing LCPs

COPY TSTMEMBR REPLACING TEMP-FLD BY TKNTEST. 4
COPY ::::zz:: : H :
TSTMEMBR ::::cccccc: ¢ 000150 06 008

EJECT

SEQ-NO/POS/LNGTH/TYPE/CODE/FLAG

000150 01 004 C 995 03
000
000
000
000
000
000

REPLACING ::
TEMP-FLD :

000150 16 009
000150 26 008
BY ::::: 000150 35 002
TKNTEST : : 000150 38 007
Lotrriiiiiioiiioooooiiooioo: 000150 45 001

OOOOO0O0
NERREERAES

PROCEDURE DIVISION.

PROCEDURE

START-HERE.
START-HERE

DISPLAY
DISPLAY

000170 01 009 W 990 01
000170 11 008 W 990
000170 19 001 000

000190 01 010 W 860 01
000190 11 001 000

000200 05 002 W 999 03
000200 08 009 W 000

000200 24 001 W 997 00
El.
i 000200 26 006
000210 09 004
000210 14 008
000210 24 002 W 999
000210 27 009 W 000
000210 36 001 000

999
851 03
PRG-NAME :: 000

TO0

=E====

PRG-NAME1 :

'"TEST COMPLETE '.
Troriririooiiiioooriiiooiiiiiooiiiiioiiiiioiiiiiooiiiiioc: : 000220 05 007 W 990 23
'"TEST COMPLETE : 000220 13 016 L 864 00
000220 29 001 000

STOP RUN.

STOP :::

000230 05 004 W 990 03
000230 10 003 W 999
000230 13 001 000

Figure 46. Tokenization of the COBOL source program containing tokens and elements (Part 2 of 2)

114 ccca

The comment paragraph line is treated as a single element. If the

conversion option Remove obsolete elements (see I”Setting conversion options”l

is set to Y, these lines are commented out.
SKIPn and EJECT compiler directives are not tokenized.
Example of a token.

The COPY statement is analyzed into elements.

Comment lines are not tokenized.

Once tokenized, tokens and elements are identified by their TOKEN-TYPE-CODE
value. See |[Appendix E, “List of LCP functions,” on page 187.|

During conversion the LCP TKNTEST will be invoked by:
H The token TKNTEST contained in the data item definition

The LCP is not invoked by:
The TKNTEST in the comment paragraph.
4] The TKNTEST in the COPY statement.

[Figure 47 on page 115|shows the trace of LCP TKNTEST generated during the
conversion of the program SAMPLPRG.

LCP

CODE-
TOKEN-TEXT STMT
TKNTEST 4
TKNTEST 5
PIC 5
x(10) 5
5
77 5
PRG-NAME1 5
PIC 5
x(10) 5
VALUE 5
SPACES 5
6
CcoPY 6
TSTMEMBR 6
REPLACING 6
TEMP-FLD 6
BY 6
TKNTEST 6
6
01 6
TEMP-LINE 6
7
8
TKNTEST 9
PIC 9
x(10) 9
9
77 9
PRG-NAME1 9
PIC 9
x(10) 9
VALUE 9
SPACES 9

Lcp
OPCODE

MOVE
GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

GTNXE

MOVE
GTTKN

GTNXT

GTNXT

GTNXT

GTNXT

GTNXT

GTNXT

GTNXT

GTNXT

GTNXT

GTNXT

1D

FILE

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

TOKEN

00013024003P990

00013028005P000

00013033001 000

00014001002N000

00014005009W000

00014024003P990

00014028005P000

00014036005W990

00014042006W000

00014048001 000

00015001004C995

00015006008C000

00015016009C999

00015026008C000

00015035002C000

00015038007C990

00015045001C000

00016001002N990

00016005009W000

00016014001 000

00013005007W990

00013024003P990

00013028005P000

00013033001 000

00014001002NO00

00014005009W000

00014024003P990

00014028005P000

00014036005W990

00014042006W000

00014048001 000

Figure 47. Trace of TKNTEST LCP execution (Part 1 of 2)

02PIC
00x(10)
00.
0077
00PRG-NAME1
02PIC
00x(10)
02VALUE
00SPACES
00.
03COPY
OOTSTMEMBR
02REPLACING
OOTEMP-FLD
00BY
TKNTEST
00.
01
OOTEMP-LINE

00.

TKNTEST
02PIC
00x(10)
00.

0077

0OPRG-NAME1
02PIC
00x(10)
02VALUE
OOSPACES

00.

Chapter 7. Developing Language Conversion Programs

YP

NP

NP

YP

YP

YP

YP

YP

NP

NP

YP

YP

YP

YP

YP

NP

NC

YC

NC

YP

YP

YP

NP

NP

YP

YP

YP

YP

YP

NP

Developing LCPs

115

Developing LCPs

LCP LCP D
CODE-
TOKEN-TEXT STMT OPCODE FILE *... ... 1. ... 2 i 3uee o 4 ... 5 it il 6 .er enn 7
10 6TNXT @
TOKEN ~ 00015001004C995 03COPY NP
TOKEN ~ 00015006008C000 OOTSTMEMBR YP
TOKEN ~ 00015016009C999 O2REPLACING YP
TOKEN ~ 00015026008C000 OOTEMP-FLD YP
TOKEN ~ 00015035002C000 00BY YP
TOKEN ~ 00015038007C990 TKNTEST YP
TOKEN ~ 00015045001C000 00. NP
TOKEN ~ 00016001002N990 01 NC
01 10 GTNXT
TOKEN ~ 00016005009H000 OOTEMP-LINE YC
TEMP-LINE 10 GTNXT
TOKEN 00016014001 000 00. NC
10 GTNXT
TOKEN ~ 00017005002N000 0005 YC
05 10 GTNXT
TOKEN ~ 00017009006W000 OOFILLER YC
FILLER 10 GTNXT
TOKEN ~ 00017033003P990 02PIC YC
PIC 10 GTNXT
TOKEN ~ 00017037005P000 00X (30) YC
X(30) 10 GTNXT
TOKEN 00017042001 000 00. NC
10 GTNXT
TOKEN ~ 00018005002N000 0005 YC
05 10 GTNXT
TOKEN ~ 00018009008W000 OOTEMP-FLD YC
TEMP-FLD 11 MOVE
TEMP-FLD 12 GOTO

Figure 48. Trace of TKNTEST LCP execution (Part 2 of 2)

Items of interest in the trace listing:

Entry into LCP
The first invocation of the LCP. Triggered by the token TKNTEST in the
data item definition.

H COBOL COPY elements
The elements of the COPY statement are retrieved by the
GET-NEXT-ELEMENT function.

El Reposition TOKEN data set
Repositioning of the TOKEN data set after performing the function
GET-NEXT-ELEMENT 20 times. This is done to be able to show the
difference when the same TOKEN data set records are read using the
function GET-NEXT-TOKEN.

[l GET-NEXT-TOKEN
GET-NEXT-TOKEN function called to retrieve the next TOKEN.

[H COBOL COPY elements
The elements that constitute the COPY statement are bypassed by the
GET-NEXT-TOKEN function.

116 ccca

Appendix A. Converted COBOL language elements

describes the language elements converted, flagged, or removed by CCCA.

The columns of this table are described below.

Language element
The language element in the input source program.

Conversion status
The status of the language element after the program is converted by

CCCA:

C Converted
R Removed

F Flagged

I Information

Language level
The source language level(s) for which the conversion and/or flagging is
performed:

1 DOS/VS COBOL—LANGLVL(1) (COBOL 68 Standard)
2 DOS/VS COBOL—LANGLVL(2) (COBOL 74 Standard)
3 0S/VS COBOL—LANGLVL(1) (COBOL 68 Standard)

4 0S/VS COBOL—LANGLVL(2) (COBOL 74 Standard)
5

VS COBOL IT (COBOL 74 Standard) Release 1.0, Release 1.1, or
Release 2.0 (or any COBOL with the CMPR?2 option)

6 VS COBOL II—NOCMPR2 (COBOL 85 Standard) Release 3.0,
Release 3.1, or Release 3.2

7 VS COBOL II—NOCMPR2 (COBOL 85 Standard)
Release 4.0

8 COBOL/370—NOCMPR2 (COBOL 85 Standard)

9 COBOL for VSE/ESA—NOCMPR2 (COBOL 85 Standard)

10 COBOL for MVS & VM—NOCMPR2 (COBOL 85 Standard)
11 COBOL for OS/390 & VM—NOCMPR2 (COBOL 85 Standard)
12 Enterprise COBOL (prior to Version 5)

Table 6. Language elements converted to specified target language

Con

ver Lang
Language sion uage
element status level Notes

F 3,4 This is a Communication statement. The Communication module
ACCEPT MESSAGE COUNT is not supported by the target languages and there is nothing
statement with which it can be replaced.

Communication feature

© Copyright IBM Corp. 1982, 2013 117

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con
ver Lang

Language sion uage

element status level Notes

ACTUAL KEY clause CF 14 The ACTUAL KEY clause is replaced by the RELATIVE KEY
clause. The clause is used for BDAM files. You should convert the
file to which the clause refers, to VSAM/RRDS.

If the new file organization is not relative (ORGANIZATION
clause), the RELATIVE clause is flagged as being incompatible
with the new file organization.

ALPHABET clause C 1-5 The keyword ALPHABET is added in front of the alphabet name
within the ALPHABET clause of the SPECIAL-NAMES
paragraph.

ALPHABETIC class C 1-5 ALPHABETIC is changed to ALPHABETIC-UPPER.

APPLY CORE-INDEX clause R 1-4 This is an ISAM file handling clause. The clause is removed from
the I-O-CONTROL paragraph.

APPLY CYL-INDEX clause R 1,2 The clause is removed from the I-O-CONTROL paragraph.

APPLY CYL-OVERFLOW clause R 1,2 The clause is removed from the I-O-CONTROL paragraph.

APPLY EXTENDED-SEARCH R 1,2 The clause is removed from the I-O-CONTROL paragraph.

clause

APPLY MASTER-INDEX clause R 1,2 The clause is removed from the I-O-CONTROL paragraph.

R 34 The clause is removed from the I-O-CONTROL paragraph.

APPLY RECORD-

OVERFLOW clause

R 34 This is an ISAM file handling clause. The clause is removed from

APPLY REORG- the I-O-CONTROL paragraph.

CRITERIA clause

APPLY WRITE-VERIFY clause R 1,2 The clause is removed from the I-O-CONTROL paragraph.

118 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con

ver Lang
Language sion uage
element status level

Notes

CF 14
ASSIGN clause
organization parameter

The assignment name is modified under the following conditions:

* If the target language level is 2 (COBOL for VSE/ESA) and the
device type is “UR”, the assignment name is set to the system
logical device (SYSnnn). For example,

SYSnnn-UR-device-S-<NAME>

is changed to
SYSnnn

 If the device class is not “UR” and the external file name is
missing (only applies to DOS/VS programs), then the system
logical device (SYSnnn) is added as the external file name. For
example,

SYSnnn-UT-device-C-<-nn>

is changed to
SYSnnn-UT-device-C-<-nn>-SYSnnn

Files that have an organizational parameter equal to D, W, A, U,
or R should be converted to VSAM/RRDS. An ORGANIZATION
IS RELATIVE clause and a FILE STATUS IS LCP-STATUS-nn
clause is added to the SELECT entries.

Files that have an organizational parameter equal to I should be
converted to VSAM/KSDS. An ORGANIZATION IS INDEXED
clause and a FILE STATUS IS LCP-STATUS-nn clause is added to
the SELECT entries.

When the target language is COBOL for VSE/ESA, if the file is a
tape device and both the programmer logical device (SYSnnn)
and an external file name are included in the file assignment
name, CCCA displays message ABJ6027.

ASSIGN integer system-name C 1-4

The integer is removed from the clause.

ASSIGN...OR C 1-4

The OR is removed.

AUTHOR paragraph C 1-11

If you specify Y for the Remove obsolete elements option on
Conversion Options panel 2, the AUTHOR paragraph in the
Identification Division is commented out.

BDAM files CF 1-4

The target languages do not support the processing of BDAM
files.

You should convert BDAM files into VSAM/RRDS files. CCCA
converts the file definitions but you must add the key algorithms
manually.

See also in this table the other BDAM file processing language
elements:

ACTUAL KEY clause.

APPLY RECORD-OVERFLOW clause.

SEEK statement.

TRACK-LIMIT clause.

Appendix A. Converted COBOL language elements 119

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con

ver Lang
Language sion uage
element status level

Notes

BLANK WHEN ZERO clause R 1-4

If the data description entry has a BLANK WHEN ZERO clause
and a PICTURE string with an * (zero suppression) symbol in it,
the BLANK WHEN ZERO clause is removed.

BLOCK CONTAINS clause R 1-11

The concept of blocking has no meaning for VSAM files. If you
specify Y for the Remove obsolete elements option on Conversion
Options panel 2, the clause will be removed from VSAM file
descriptions.

CALL statement C 1,2

If the program-name in the CALL statement is not enclosed in
quotation marks or apostrophes, then quotation marks (if the
literal delimiter is the quotation mark) or apostrophes (if the
literal delimiter is the apostrophe) are placed around the
program-name.

CALL identifier statement F 3-5

The statement is flagged if the identifier has a PICTURE string
consisting of A's and B's only. The COBOL 74 Standard classes
these fields as alphabetic, whilst the COBOL 85 Standard classes
them as alphanumeric-edited.

You will have to make a change to the program as
alphanumeric-edited identifiers are not permitted in the CALL
statement.

CALL...ON OVERFLOW
statement

Under the COBOL 85 Standard the ON OVERFLOW phrase
executes under more conditions than it does under the COBOL 68
and COBOL 74 Standards.

The ON OVERFLOW phrase in a DOS/VS COBOL, OS/VS
COBOL or VS COBOL II program is not invoked, if the program
is running under CICS. When an overflow condition occurs in a
COBOL/VSE program running under CICS, the ON OVERFLOW
phrase will be invoked, if it is specified.

The statement is flagged if the target language is not VS COBOL
II.

CALL...ON EXCEPTION
statement

The ON EXCEPTION phrase in a VS COBOL II program is not
invoked, if the program is running under CICS. When an
exception condition occurs in a COBOL/VSE program running
under CICS, the ON EXCEPTION phrase will be invoked, if it is
specified.

The statement is flagged if the target language is not VS COBOL
1L

CALL...USING
statement

If identifiers following USING are VSAM file names then the
statement is flagged.

If identifiers following USING are procedure names and the
Check procedure names option on Conversion Options panel 2 is
set to Y, then the statement is flagged.

120 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Language
element

Con
ver
sion
status

Lang
uage
level

Notes

CANCEL statement

F

3-5

The statement is flagged if there is an identifier in the statement
with a PICTURE string consisting of A's and B's only. The
COBOL 74 Standard classes these fields as alphabetic, whilst the
COBOL 85 standard classes them as alphanumeric-edited.

You will have to make a change to the program as
alphanumeric-edited identifiers are not permitted in the CANCEL
statement.

CBL statement

CF

1-4

The following options are obsolete and are replaced with new
compile options: BUF, CLIST, DMAP, CATALR, LINECNT,
LOAD, PMAP, SYST, SYSx, STATE, SYNTAX, CSYNTAX,
SUPMAP, SXREF, VBSUM.

RF

The following options are removed: BATCH, COUNT, ENDJOB,
FLOW, LANGLVL1/2, SYMDMP, CDECK, FDECK, LCOL1/2,
LSTONLY, LSTCOMP, 1.120, L132, OSDECK.

The following option is removed if the target language is not
COBOL II: RESIDENT.

CF

5-7

The following option is replaced if the target language is not
COBOL II: FDUMP.

RF

5-7

The following option is removed if the target language is not
COBOL II: RESIDENT.

5-11

All compiler options that the target language does not support
are removed from the statement and, where possible, are replaced
with the target language equivalents.

CLOSE...WITH DISP
CLOSE...WITH POSITIONING
statements

34

The WITH DISP phrase and the WITH POSITIONING phrase are
removed.

CLOSE...REEL/UNIT FOR
REMOVAL statement

34

CLOSE...REEL/UNIT FOR REMOVAL statements are flagged
because in the target languages the FOR REMOVAL option is
treated as a comment.

COM-REG special register

1,2

The COM-REG special register is not supported by the target
languages. You should remove all references to it from the
program.

COMMUNICATION SECTION

34

The Communication module is not supported by the target
languages and there is nothing with which it can be replaced.

See also in this table the other Communication module language
elements:

ACCEPT MESSAGE COUNT statement.

DISABLE statement.

ENABLE statement.

RECEIVE statement.

SEND statement.

Appendix A. Converted COBOL language elements 121

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con

ver Lang
Language sion uage
element status level

Notes

CONFIGURATION SECTION CF 1-4
header

The CONFIGURATION SECTION header is added, if it is
missing and a SOURCE-COMPUTER, an OBJECT-COMPUTER,
or a SPECIAL-NAMES paragraph is present. If the
CONFIGURATION SECTION header is coded out of sequence,
then attempts are made to put it in its correct place. If this cannot
be done, then the CONFIGURATION SECTION header is
flagged.

COPY statement C 1,3

COPY statements with associated names are not supported by the
target languages.

The following example shows how these COPY statements are
converted:

01 RECORD1 COPY MBR-A.

Copy member (MBR-A) before and after conversion:

01 RECORD-A.
05 FIELD-A...
05 FIELD-B...

Statement after conversion:

01 RECORD1
COPY MBR-A REPLACING
==01 RECORD-A.== BY =

1-5

Under the COBOL 68 and COBOL 74 Standard, National
extension characters @, # and $ are allowed in the text-name and
library-name. The COBOL 85 Standard allows these characters in
the text-name and library-name, if they are in the form of a
nonnumeric literal.

If the text-name or library-name contains these National
characters and is not in the form of a numeric literal, CCCA
encloses the name in quotation marks or apostrophes.

122 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con

ver Lang
Language sion uage
element status level

Notes

F 1-5
COPY...REPLACING
statement

If there are lowercase alphabetic characters in operands of the
REPLACING phrase, that are not in nonnumeric literals, the
statement is flagged. Under the COBOL 68 and COBOL 74
standards the REPLACING phrase is case sensitive. Under the
COBOL 85 standard, lowercase characters are treated as their
uppercase equivalent. You should check to see if this change will
result in different text being copied into your program.

If the operands of the REPLACING phrase contain a colon (:)
character, that is not in a nonnumeric literal, the statement is
flagged. Under the COBOL 68 and COBOL 74 Standards the
colon (:) is a non-COBOL character. Under the COBOL 85
Standard the colon character is treated as a separator. You should
check to see if this change will result in different text being
copied into your program.

If the operands of the REPLACING phrase contain an COBOL 85
Standard non-COBOL character that is not in a nonnumeric
literal, the statement is flagged. Under the COBOL 68 and
COBOL 74 Standards non-COBOL characters are permitted in the
REPLACING option. Under the COBOL 85 standard non-COBOL
characters in the REPLACING phrase are diagnosed. You should
remove all non-COBOL characters from the REPLACING phrase
and from the copy book.

CURRENCY SIGN clause F 1,3

The target languages do not accept the / (slash) character or the
= (equal) character in the CURRENCY SIGN clause.

CURRENT-DATE special register C 1-4

The CURRENT-DATE register is not supported by the target
languages. Wherever CURRENT-DATE is referenced in the
program, it is replaced by code that obtains the date from the
system and puts it in the format of the CURRENT-DATE register.
The fields required for the reformatting are generated in the
WORKING-STORAGE section.

For CICS programs converting to VS COBOL I, the date is
retrieved from the system using an EXEC CICS ASKTIME
statement. (CICS Release 1.7 or later is required.)

For non-CICS programs converting to VS COBOL II, the
ACCEPT...FROM DATE statement is used to obtain the date.

For programs converting to a non-VS COBOL II level, the
Intrinsic Function CURRENT-DATE is used to obtain the date.
The fields required for reformatting are generated in the
WORKING-STORAGE SECTION.

For DOS/VS COBOL, there are two different formats for the
CURRENT-DATE register. You must specify in the VSE system
date format field on Conversion Options panel 1, the date format
that is used at your installation. If you specify the wrong one
CCCA will not convert this language element correctly.

Appendix A. Converted COBOL language elements 123

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con
ver Lang
Language sion uage
element status level Notes
DATA RECORDS clause R 1-11 If you specify Y for the Remove obsolete elements option on
Conversion Options panel 2, the DATA RECORDS clause is
removed from the FD entry.
The word RECORDS is added if missing when the clause is not
removed.
C 1-4 If the hyphen after DATE is missing, it is added.
DATE COMPILED/
DATE WRITTEN
headers
C 1-11 If you specify Y for the Remove obsolete elements option on
DATE-COMPILED/ Conversion Options panel 2, these paragraphs in the
DATE-WRITTEN Identification Division are commented out.
paragraphs
DATE-COMPILED header C 1-4 If you specify N for the Remove obsolete elements option on
Conversion Options panel 2 and there is no period after the
header, a period is added.
DEBUG card and packet 1-4 These are commented out.
F 34 This is a Communication statement. The Communication module
DISABLE statement is not supported by the target languages and there is nothing
Communication feature with which it can be replaced.
F 1-5 DIVIDE...ON SIZE ERROR statements with multiple receiving
DIVIDE...ON SIZE ERROR fields are flagged because the ON SIZE ERROR phrase will not
statement be executed for intermediate results under the COBOL 85
Standard.
F 34 This is a Communication statement. The Communication module
ENABLE statement is not supported by the target languages and there is nothing
Communication feature with which it can be replaced.
ENTER statement R 1-11 If you specify Y for the Remove obsolete elements option on
Conversion Options panel 2, the ENTER statement is removed.
ERROR declaratives C 1-4 An ERROR declarative SECTION is generated for each file that is
to be converted to VSAM, as long as there does not exist a global
file declarative (such as INPUT, OUTPUT, I-O, EXTEND) or a
declarative for the file in question. The code in the SECTION
includes a DISPLAY of the returned file status and a GOBACK.
RI 1-4 The GIVING option is removed from the program.
ERROR declaratives
GIVING option
EXAMINE C 1-4 The EXAMINE statement is replaced by an INSPECT statement
and the statement MOVE ZERO TO TALLY is added in front of
it.
EXHIBIT statement C 1-4 The EXHIBIT statement is replaced by a DISPLAY statement.

124 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Language
element

Con

ver Lang
sion uage
status level

Notes

EXIT PROGRAM statement
GOBACK statement
STOP RUN statement

C 1-5

Under the COBOL 85 Standard, control can not flow beyond the
last line of a called subprogram. The compiler generates an
implicit EXIT PROGRAM at the end of each program.

Under the COBOL 68 and COBOL 74 Standard control can flow
beyond the last line of a called program. When this happens the
program ABEND:s.

The COBOL 68 and COBOL 74 Standard behavior can be
preserved under the COBOL 85 Standard by adding, at the end
of the program, a section with a call to an abend module.

If you specify Y for the Negate implicit EXIT PROGRAM option
on Conversion Options panel 2, and EXIT PROGRAM, STOP
RUN, or GOBACK is not the last physical statement in the
program, a section will be added to the end of the program.

If the program being converted is a batch program, the section
will include a CALL to one of the following modules:

* ILBOABNO—if you are converting to VS/COBOL II
* CEE5ABD—if you are converting to COBOL for VSE/ESA

¢ CEE3ABD—if you are converting to COBOL for MVS & VM or
COBOL for OS/390 & VM

If the program being converted is a CICS program, the section
will include an EXEC CICS ABEND('CCCA') statement.

FILE-LIMIT/
FILE-LIMITS
clauses

The clause is removed from the FILE-CONTROL paragraph.

FILE STATUS clause

A FILE STATUS clause:
FILE-STATUS IS LCP-FILE-STATUS-nn

is added to the FILE-CONTROL paragraph for each file that is to
be converted to VSAM. The status key data item
LCP-FILE-STATUS-nn referred to in the clause is added to the
WORKING-STORAGE section. nn is a sequence number.

FILE STATUS codes

The file status codes returned under the COBOL 85 Standard are
different from those returned under the COBOL 68 and COBOL
74 Standard.

You should check all references to the file status key in the
program and update the values of the file status codes where it is
required.

GOBACK statement

See the EXIT PROGRAM statement entry in this table.

GREATER THEN
relational operator

THEN is changed to THAN.

Appendix A. Converted COBOL language elements 125

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Language
element

Con
ver
sion
status

Lang
uage
level

Notes

IF statement

CF

1-4

Brackets immediately prior to relational operators are moved, but
you should inspect the conversion.

For example:
IF A (= B)

is converted to:
IF (A = B)

The target languages do not accept the following statements:

IF dataname ZEROS...
IF dataname ZEROES...

They are converted to:

IF dataname zero...

Superfluous IFs are removed.

Indexes (qualified)

34

Qualified indexes are no longer permitted. Any reference to one
will be flagged.

INITIALIZE...REPLACING
ALPHABETIC/
ALPHANUMERIC-EDITED
statement

The statement is flagged if there are receiving fields with
PICTURE strings that consist of A's and B's only. The COBOL 74
Standard classes these fields as alphabetic, whilst the COBOL 85
Standard classes them as alphanumeric-edited.

In most cases you will have to change this statement if you want
it to exhibit the same behavior as before.

INSPECT statement

The statement is flagged if the PROGRAM COLLATING
SEQUENCE established in the OBJECT COMPUTER paragraph
identifies an alphabet that was defined with the ALSO clause.

Under these circumstances the statement will behave differently
under the COBOL 85 Standard.

INSTALLATION paragraph

1-11

If you specify Y for the Remove obsolete elements option on
Conversion Options panel 2, the INSTALLATION paragraph in
the Identification Division is commented out.

ISAM files

1-4

The target languages do not support the processing of ISAM files.

You should convert ISAM files into VSAM /KSDS files. CCCA
will convert the file definition and I/0 statements for ISAM files.

See also in this table the other ISAM file processing language
elements:

APPLY CORE-INDEX clause.

APPLY REORG-CRITERIA clause

NOMINAL KEY clause.

TRACK AREA clause.

START...USING KEY statement

126 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con
ver Lang
Language sion uage
element status level Notes
CF 1,3 Under the COBOL 68 Standard, if a JUSTIFIED clause is specified
JUSTIFIED together with a VALUE clause for a data description entry, the
JUST RIGHT initial data is right justified. Under the COBOL 85 Standard the
JUSTIFIED RIGHT initial data is not right justified.
clause
To preserve the COBOL 68 Standard behavior of this language
element, CCCA makes the following conversion.
If the length of the nonnumeric literal in the VALUE clause is less
than the length of the field as specified in the PICTURE clause,
spaces are added to the front of the literal string until there
lengths are equal.
The clause will be flagged, instead of converted, if the literal has
more than 28 characters.
LABEL RECORDS clause R 1-11 If you specify Y for the Remove obsolete elements option on the
Optional Processing Panel, this clause is removed.
The word RECORDS is added, if missing, when the clause is not
removed.
LABEL RECORDS... R1I 1-4 This option is removed from the program. The data-name
TOTALING/TOTALED AREA associated with this option is listed at the end of the diagnostic
option listing.
C 1-4 THEN is changed to THAN.
LESS THEN
relational operator
Literals - Nonnumeric CF 1-4 If the continuation of a nonnumeric literal begins in Area A, it is
shifted to the right until its whole length lies within Area B.
If the continuation is too long to fit in Area B, it is flagged.
If the continuation does not start with a delimiter, then one is
added.
R 1-11 If you specify Y for the Remove obsolete elements option on
MEMORY SIZE Conversion Options panel 2, the MEMORY SIZE clause of the
clause OBJECT-COMPUTER paragraph is removed.
MOVE statement 1-4 Superfluous TOs are removed.
MOVE ALL literal F 1,3 MOVE ALL literal TO numeric will be flagged with a warning.
1-4 The target languages do not allow multiple receiving fields in the
MOVE CORR/ MOVE CORRESPONDING statement.
CORRESPONDING
statement If the statement has multiple receiving fields, it is replaced by
separate MOVE CORRESPONDING statements for each of the
receiving fields.
R 1-4 The clause is removed from the program.

FOR MULTIPLE REEL/UNIT
clause

Appendix A. Converted COBOL language elements 127

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Language
element

Con
ver
sion
status

Lang
uage
level

Notes

MULTIPLE FILE TAPE clause

R

1-11

If you specify Y for the Remove obsolete elements option on
Conversion Options panel 2, this clause is removed from the
I-O-CONTROL paragraph.

MULTIPLY...ON SIZE ERROR
statement

1-5

MULTIPLY...ON SIZE ERROR statements with multiple receiving
fields are flagged because the ON SIZE ERROR phrase will not
be executed for intermediate results under the COBOL 85
Standard.

NOMINAL KEY clause

CR

1-4

You should convert this file to VSAM.

If the new organization for the file is INDEXED the NOMINAL
KEY clause is removed. Before every I/O statement for these file,
the following statement is added prior to the I/O statement:

MOVE nominal-key-name TO record-key-name
After the I/0 statement, the statement
MOVE record-key-name TO nominal-key-name

If the new organization for the file is RELATIVE NOMINAL KEY
is replaced by RELATIVE KEY.

NOT

CF

1,3

C: NOT in an abbreviated combined relation will be changed into
an unabbreviated relation condition.

F: If more than one NOT is involved, the expression is flagged.
You will have to update the expression manually.

NOTE statement

1-4

The NOTE statement is used to write comments in the source
program. It is not supported by the target languages.

CCCA fully converts this statement by commenting it out.

If the NOTE sentence is the first sentence of a paragraph, an
asterisk is placed in column 7 of each line in the paragraph.

If the Note sentence is not the first sentence of the paragraph, an
asterisk is placed in column 7 of all lines up to the first period. If
other language elements, not part of the NOTE statement, are on
the first or last line of the NOTE statement, the line is split in
order to isolate the NOTE.

NSTD-REELS special register

1,2

The NSTD-REELS special register is not supported in the target
languages. You should remove all references to it from the
program.

OCCURS clause

OS/VS COBOL and DOS/VS COBOL allow a non-standard order
for phrases in the OCCURS clause. They allow the DEPENDING
ON phrase after or among the ASCENDING/DESCENDING
phrases. They also allow the DEPENDING ON phrase after the
INDEXED BY phrase. The target languages only allow phrases in
the standard order.

Phrases in the OCCURS clause are put in the standard order.

128 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con
ver Lang
Language sion uage
element status level Notes
C 1-5 COBOL statements that result in data transfer to a variable length

OCCURS DEPENDING ON
clause
(variable length record)

receiver that contains its own OCCURS DEPENDING ON (ODO)
object behave differently under the COBOL 85 Standard.

Under the COBOL 68 and COBOL 74 Standards all ODO objects
in sending and receiving fields must be set before the statement
is executed. The actual lengths of the sender and receiver are
calculated just before the execution of the data movement
statement.

Under the COBOL 85 Standard, in some circumstances, the
maximum length of the variable length group is used when it is a
receiver, whereas the COBOL 68 and COBOL 74 Standard always
use the actual length.

CCCA preserves the COBOL 68 and COBOL 74 behavior in the
following way.

For the following statements

¢ MOVE...TO identifier

* READ..INTO identifier

e RETURN..INTO identifier

¢ UNSTRING...INTO identifier DELIMITER IN identifier

If the identifier is a variable length data item that contains its
own ODO object, then reference modification is added to it.

For example:
MOVE...TO identifier

is changed to
MOVE...TO identifier (1:LENGTH OF identifier)

For the following statements

* RELEASE record-name FROM identifier
* REWRITE record-name FROM identifier
* WRITE record-name FROM identifier

if the identifier is a variable length data item that contains its
own ODO object, the FROM phrase is removed from the
statement and a MOVE statement with reference modification is
added before the statement:

For example,
WRITE record-name FROM identifier

is changed to

MOVE identifier TO record-name (1:LENGTH OF record-name)
WRITE record-name

MOVE CORRESPONDING statements are flagged as reference
modification is not allowed when the CORRESPONDING phrase
is specified.

Appendix A. Converted COBOL language elements 129

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con
ver Lang

Language sion uage
element status level Notes
C 6 VS COBOL 1II Release 3 (COBOL 85 Standard) and the target
OCCURS DEPENDING ON languages differ in the length used for the data transfer of a
clause reference modified variable length group receiver that contains its
(reference modification) own OCCURS DEPENDING ON (ODO) object. If no length is
specified in the reference modifier, VS COBOL II Release 3 uses
the current length of the group as defined by the ODO object.
The target languages use the maximum length of the ODO object
regardless of the value in the ODO.
To preserve the behavior of this language element, the converter
inserts the length of the receiver into the receiver. For example:
MOVE ODO-SENDER TO ODO-RECEIVER (1:)
where ODO-RECEIVER is a variable length field that contains its
own ODO object is converted to:
MOVE ODO-SENDER TO ODO-RECEIVER (1:LENGTH OF RECEIVER)
ON statement CF 14 The ON statement is not supported by the target languages.
The statement:
ON integer
imperative statement
is converted to:
ADD 1 TO LCP-ONCTR-nn
IF LCP-ONCTR-nn = integer
imperative statement
The statement:
ON integer-1 until integer-2
imperative statement
is converted to:
ADD 1 TO LCP-ONCTR-nn
IF LCP-ONCTR-nn > (integer-1 - 1) & < integer-2
imperative statement
A data item with the dataname LCP-ONCTR-nn (where nn is a
sequence number) is added into the WORKING-STORAGE
section with an initial value of zero.
More complex ON statements are flagged.
C 34 The DISP option, LEAVE option and REREAD option are

OPEN...DISP
OPEN...LEAVE
OPEN...REREAD
statements

removed.

130 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con

ver
Language sion
element status

Lang
uage
level

Notes

F

OPEN...REVERSED
statement

34

You should check whether the file in the OPEN statement has
multiple reels. If it does, you will have to make a change to the
program, because for the target languages this option is only
valid for single reel files. OS/VS COBOL handles single reel files
and in an undocumented extension multireel files.

ORGANIZATION clause C

For VSAM files, this clause is removed.

OTHERWISE

OTHERWISE is replaced by ELSE.

PERFORM/ALTER F

The section is checked for a priority number less than 49 and for
the presence of ALTER. If this is not the case, manual changes
may be required if this independent section is performed from
outside the section.

PERFORM...VARYING...
AFTER statement

1-5

Under the COBOL 85 Standard the rules for augmenting
variables have changed. If there are dependencies between
variables of the statement, then the statement may behave
differently

PERFORM...VARYING...AFTER statements are flagged if the
conversion process detects a possible dependency. You should
check to see if there are any dependencies between the variables
of the statement that will result in different behavior. If there are
you should modify the statement.

Periods C

1-4

If there is no period immediately before or immediately after
paragraph names or section headers in the PROCEDURE
DIVISION, one is inserted.

FI
PICTURE clause
scaled integers

1,3

Scaled integers (that is, data items that have a P as the rightmost
symbol in their PICTURE strings) are flagged.

If the scaled integer is the sending field in a MOVE statement
and the receiving field is alphanumeric or numeric edited, you
will have to convert this statement.

If the scaled integer is compared with an alphanumeric or
numeric edited field, you will have to convert this statement.

24,5

Scaled integers are flagged.

If the scaled integer is compared with a nonnumeric field, you
will have to convert this statement.

Appendix A. Converted COBOL language elements 131

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Language
element

Con
ver
sion
status

Lang
uage
level

Notes

PROCESS statement

CF

1-4

The following options are obsolete and are replaced with new
compile options: BUF, CLIST, DMAP, CATALR, LINECNT,
LOAD, PMAP, SYST, SYSx, STATE, SYNTAX, CSYNTAX,
SUPMAP, SXREF, VBSUM.

RF

1-4

The following options are removed: BATCH, COUNT, ENDJOB,
FLOW, LANGLVL1/2, SYMDMP, CDECK, FDECK, LCOL1/2,
LSTONLY, LSTCOMP, 1.120, L132, OSDECK.

The following option is removed if the target language is not
COBOL II: RESIDENT.

CF

The following option is replaced if the target language is not
COBOL II: FDUMP.

RF

The following option is removed if the target language is not
COBOL II: RESIDENT.

All compiler options that the target language does not support
are removed from the statement and, where possible, are replaced
with the target language equivalents.

PROCESSING MODE clause

The PROCESSING MODE clause is removed.

Program name

The target languages do not allow a data item to have a
data-name that is the same as the program name.

If there is one in the program, the dataname will be suffixed, in
the same manner as datanames that are reserved words.

PROGRAM-ID header

1-4

If the PROGRAM-ID header begins in Area B, it is moved to the
left so that it begins in Area A.

READ statement
ISAM files

1-4

For randomly accessed indexed (ISAM) files, the following
statement is added prior to the READ statement:

MOVE nominal-key-name TO record-key-name

After the READ statement, the statement
MOVE record-key-name TO nominal-key-name

is added.

You should convert the file to VSAM.

READY TRACE statement

1-4

The statement is removed.

RECEIVE statement
Communication feature

34

This is a Communication statement. The Communication module
is not supported by the target languages and there is nothing
with which it can be replaced.

RECORD CONTAINS

1-11

The clause is removed from the program, except for RECORD
CONTAINS 0, which is left in place.

RECORDING MODE clause

1-11

The target language compilers ignore this clause, if it is specified
for a VSAM file.

If the clause is in a file description entry for a VSAM file or a file
that is to be converted to VSAM, it is removed.

132 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con
ver Lang
Language sion uage
element status level Notes
C 1-4 The target languages do not permit REDEFINES clauses in FD or

REDEFINES clause SD entries.

in FD or SD entry
As they are superfluous, they are removed.

F 1-5 This is flagged.

Picture P in

RELATIVE KEY

REMARKS paragraph C 1-4 This is converted to comments with an asterisk (*) inserted in
column 7 of the paragraph header and all succeeding lines of the
paragraph.

REPLACE statement F 6 The REPLACE statement is flagged because blank lines and
comment lines in text that match pseudo-text are treated
differently in the target languages.

This could affect the semantics of the resulting program since the
line numbers could be different. (For example if the program uses
the USE FOR DEBUGGING declarative, the contents of the
DEBUG-ITEM may be different).
You should check that the semantics of the program is not
altered.

F 1-4 These statements are not supported by the target languages:

REPORT SECTION & GENERATE

REPORT WRITER INITIATE

statements REPORT

TERMINATE

USE BEFORE REPORTING
If you specify Y for the Flag Report Writer Statements option on
Conversion Options panel 2, they will be flagged.
If you want to keep these statements, you will require the
COBOL Report Writer Pre-compiler.

RESERVE ALTERNATE AREAS C 1-4 The following changes are performed:
from RESERVE NO/n ALTERNATE AREA/AREAS.
to RESERVE 1/n + 1 AREA/AREAS.

RESERVE AREAS C 1-4 The following changes are performed:
from ANS68 RESERVE n AREA/AREAS.
to ANS74 RESERVE n+1 AREA/AREAS.

Reserved word C 1-9 A suffix is appended to all user defined words that are reserved
words in the target language. You specify the suffix that you
want appended in the Reserved word suffix field of the
Conversion Parameters Panel. -74 is the default suffix.

RESET TRACE statement R 1-4 The statement is removed.

Appendix A. Converted COBOL language elements 133

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Language
element

Con

ver Lang
sion uage
status level

Notes

REWRITE statement
ISAM files

C 1-4

For randomly accessed indexed (ISAM) files, the following
statement is added prior to the REWRITE statement:

MOVE nominal-key-name TO record-key-name

After the REWRITE statement, the statement
MOVE record-key-name TO nominal-key-name

is added.

You should convert the file to VSAM.

SAME AREA clause

SAME AREA is changed to SAME RECORD AREA.

SEARCH ALL

The statement is flagged.

SEARCH...WHEN

C 1-4

In DOS/VS COBOL and OS/VS COBOL the ASCENDING/
DESCENDING KEY data item may be specified as either the
subject or the object of the WHEN relation condition. In the
target languages it must be specified as the subject.

If the key is not the subject, the condition is reversed, so that the
subject becomes the object.

NEXT SENTENCE is added if no statement is found.

SECURITY paragraph

If you specify Y for the Remove obsolete elements option on
Conversion Options panel 2, the SECURITY paragraph in the
Identification Division is commented out.

SEEK

This is a BDAM file handling statement.

The statement is removed from the program.

SELECT OPTIONAL

The OPTIONAL phrase is removed from the program.

SEND statement
Communication feature

F 34

This is a Communication statement. The Communication module
is not supported by the target languages and there is nothing
with which it can be replaced.

SET...TO TRUE statement

Under the COBOL 74 Standard, the SET...TO TRUE statement is
performed according to the rules of the MOVE statement. Under
the COBOL 85 Standard, SET...TO TRUE follows the rules of the
VALUE clause. There are three instances in which different
behavior arises:

* when the conditional variable is described by a JUSTIFIED
clause and the condition name value is not justified.

* when the conditional variable is described by a BLANK
WHEN ZERO clause and the condition name value is zero.

* when the conditional variable has editing symbols in its
PICTURE string.

CCCA will flag all occurrences of such condition names when
they appear in a SET...TO TRUE statement.

SORT-OPTION clause

The clause is removed from the SD entry.

134 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con
ver Lang
Language sion uage
element status level Notes
C 1-4 The USING KEY clause of the START statement is not supported
START..USING KEY by the target languages. START statements that specify this clause
statement are converted to START... KEY statements.
STOP RUN statement 1-5 See the EXIT PROGRAM statement entry in this table.
STRING statement F 3-5 The statement is flagged if it has a receiving field with a
PICTURE string that consist of A's and B's only. The COBOL 74
Standard classes these fields as alphabetic, whilst the COBOL 85
Standard classes them as alphanumeric-edited.
You will have to make a change to the program as
alphanumeric-edited receiving fields in the STRING statement are
not permitted.
F 3-5 The statement is flagged if the PROGRAM COLLATING
SEQUENCE established in the OBJECT COMPUTER paragraph
identifies an alphabet that was defined with the ALSO clause.
Under these circumstances the statement will behave differently
under the COBOL 85 Standard.
F 34 String statements:
STRING identifier-1 DELIMITED BY identifier-2
INTO identifier-3 WITH POINTER identifier-4...
where identifier-1 or identifier-2 is the same as identifier-3 or
identifier-4 or where identifier-3 is the same as identifier-4 are
flagged.
C 1-4 THAN is removed.
> THAN
relational operator
C 1-4 THAN is removed.
< THAN
relational operator
C 1-4 THEN is removed.
> THEN
relational operator
C 1-4 THEN is removed.
< THEN
relational operator
THEN R 1-4 THEN used between statements is removed.

Appendix A. Converted COBOL language elements 135

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con
ver Lang
Language sion uage
element status level Notes

TIME-OF-DAY special register C 1-4 The TIME-OF-DAY register is not supported by the target
languages. Wherever TIME-OF-DAY is referenced in the program,
it is replaced by code that obtains the time from the system and
puts it in the format of the TIME-OF-DAY register. The fields
required for the reformatting are generated in the
WORKING-STORAGE section.

For CICS programs converting to VS COBOL II, the time is
retrieved from the system using an EXEC CICS ASKTIME
statement. (CICS Release 1.7 or later is required.)

For non-CICS programs converting to VS COBOL I, the
ACCEPT..FROM TIME statement is used to obtain the time.

For programs converting to a non-VS COBOL II level, the
Intrinsic Function CURRENT-DATE is used to obtain the time.
The fields required for reformatting are generated in the
WORKING-STORAGE SECTION.

C 1-4 TO is removed.

= TO
relational operator

RI 34 This option is removed from the program. The data-name
TOTALING/ associated with this option is listed at the end of the diagnostic
TOTALED AREA listing.

TRACE R 1-4 The clause is removed from the program.

~

TRACK-AREA 1-4 The clause is removed from the program.

TRACK-LIMIT clause R 34 The clause is removed from the program.

136 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con

ver Lang
Language sion uage
element status level

Notes

TRANSFORM statement CF 1-4

CCCA converts a TRANSFORM to an INSPECT statement when
a TRANSFORM statement is converting:

¢ From a figurative constant to another figurative constant
 From a figurative constant to a nonnumeric literal

¢ From a figurative constant to the value of an identifier

¢ From a nonnumeric literal to a figurative constant

¢ From the value of an identifier to a figurative constant

* From the value of one identifier to the value of another

CCCA may convert a TRANSFORM to an INSPECT statement
when a TRANSFORM statement is converting:

* A nonnumeric literal to another nonnumeric literal:

— The “from” and the “to” literals must be the same size. If
they are not, it is assumed the “to” literal is a single
character.

— If the “from” literal is 28 characters or less, the
TRANSFORM is converted to an INSPECT statement.

— If the “from” literal is more than 28 characters in length,
manual intervention is required due to an internal limitation
within CCCA.

* the value of an identifier to a nonnumeric literal:

— The “to” literal must be longer than a single character. If this
is the case, it is assumed the literal is the same size as the
identifier and conversion to the INSPECT statement occurs.

— If the literal is a single character, manual intervention is
required as CCCA cannot determine if this matches the size
of the “from” identifier.

Manual intervention is required whenever a TRANSFORM
statement is converting a nonnumeric literal to the value of an
identifier.

CCCA flags any INSPECT statements which it is unable to
convert to INSPECT statements.

UNSTRING statement F 1,3

The UNSTRING statement is flagged if an ALL is specified in the
DELIMITED BY phrase and the DELIMITER IN phrase is also
specified.

Insert the word OR between identifiers in the DELIMITED BY
phrase if it is missing and remove any commas or semicolons.

Remove the word IS if it appears in the POINTER phrase.

The UNSTRING statement is flagged if subscripted data items are
found following the DELIMITED BY/INTO/DELIMITER IN/
COUNT IN phrases.

The statement is flagged if the PROGRAM COLLATING
SEQUENCE established in the OBJECT COMPUTER paragraph
identifies an alphabet that was defined with the ALSO clause.

Under these circumstances the statement will behave differently
under the COBOL 85 Standard.

Appendix A. Converted COBOL language elements 137

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Language
element

Con

ver Lang
sion uage
status level

Notes

UPSI name

CF 1-5

Condition names are added. UPSI-n is replaced by
condition-name. For example:

LCP-ON-UPSI-n

and
LCP-OFF-UPSI-n

Where n is a number from 0 to 7.

Note: When the target language is COBOL/VSE, CCCA
generates a warning message to highlight the need to possibly
alter the program's JCL.

USE Procedures (precedences of) F 6

In VS COBOL II Release 3, a GLOBAL file specific USE procedure
always takes precedence even if an applicable mode specific USE
procedure exists in the current program or if a mode specific USE
procedure with the GLOBAL attribute in an outer program is
nearer than the (GLOBAL) file-specific procedure.

CCCA will flag all GLOBAL file-specific USE procedures.
Mode-specific declaratives in contained programs will now take
precedence. You should check the consequences of this.

USE AFTER
STANDARD .. ON ..
GIVING

RI 1-4

The GIVING option is removed from the program. A list of
affected data-names is printed in the conversion listing.

USE ... AFTER ..
LABEL PROCEDURE ...

Removed if the target language 5 is selected.

USE BEFORE
STANDARD

USE BEFORE STANDARD is removed from the program.

USE FOR DEBUGGING

If an identifier following DEBUGGING is a file name, then the
statement is flagged.

If an identifier following DEBUGGING is not a procedure name
and the Check procedure names option on Conversion Options
panel 2 is set to Y, then the statement is flagged.

VALUE in 88 level

If the value of a level 88 refers to a variable defined with a
PICTURE X and the value is not enclosed between quotes or
apostrophes, quotes or apostrophes will be added.

VALUE in non-88 level

If the data item PICTURE string is numeric and the contents of
the VALUE literal is also numeric, then the VALUE literal is
changed to a numeric literal. That is, the quotes or apostrophes
are removed.

Signed VALUE

The sign is removed from the value if PIC is unsigned.

VALUES

If not used in 88 level, VALUES is changed to VALUE.

138 ccca

Converted COBOL

Table 6. Language elements converted to specified target language (continued)

Con
ver Lang
Language sion uage
element status level Notes
VALUE OF clause R 1-11 If you specify Y for the Remove obsolete elements option on
Conversion Options panel 2, the VALUE OF clause is removed
from the FD entry.
WHEN-COMPILED C 1,2 Programs converting to VS COBOL II with a date format of
DD/MM/YY obtain the date and time from the
WHEN-COMPILED special register.

C 34 Programs converting to VS COBOL II obtain the date and time
from the WHEN-COMPILED special register. Note that the
original format of the WHEN-COMPILED special register
included a 4-digit year. The century value is not available from
the current special register and, if required, must be manually
added to the converted source program.

C 1-4 Programs converting to a non-VS COBOL II target level obtain
the date and time information from the Intrinsic Function
WHEN-COMPILED.

The fields required for reformatting are generated in the
WORKING-STORAGE SECTION.
C 1-4 For randomly accessed indexed (ISAM) files, the following
WRITE statement statement is added prior to the WRITE statement:
ISAM files MOVE nominal-key-name TO record-key-name
After the WRITE statement, the statement
MOVE record-key-name TO nominal-key-name
is added.
You should convert the file to VSAM.
C 1-4 The target languages do not accept LINE or LINES in this
WRITE...BEFORE/AFTER statement. They are removed.
ADVANCING
mnemonic-name
LINE/LINES

WRITE ... AFTER POSITIONING C 1-4
n lines

If n is a literal, this is changed to WRITE ... AFTER ADVANCING n
LINES. If n is an identifier, SPECIAL-NAMES are generated and a
section is added at the end of the program.

Note: When compiling the converted program with the target
language compiler, use the NOADV option. If POSITIONING and
ADVANCING are used in the old program, you should review
the ADV option.

Appendix A. Converted COBOL language elements 139

Converted COBOL

140 ccca

Appendix B. Converted CICS commands

CCCA converts CICS Command Level statements from the syntax of the source
language level to the target language level.

The Base Locator for Linkage sections (BLLs) are classified as either primary or
secondary. Primary BLLs are associated with the portion of the record that is equal
to or less than 4Kb (4096 bytes), and secondary BLLS correspond to record portions
greater than 4Kb (4096 bytes).

Linkage section

If the CICS option on the Conversion (Selection) panel (see [Figure 12 on page 28),
is set to Y, the BLL definitions are removed. If the entire BLL structure is redefined,
the redefined structure is removed. If the BLLs are not defined with a length of 4
bytes, the CICS conversion cannot be performed.

Note: If the level 01 of the BLL structure is FILLER, the BLL definitions are not
removed from the Linkage Section, but all of the references to BLLs in the
Procedure Division are processed.

Working-Storage Section

If needed by the conversion of statements involving primary BLLs, the following
code is generated in the Working-Storage Section for use with the POINTER
facility.

77 LCP-WS-ADDR-COMP PIC S9(8) COMP.

77 LCP-WS-ADDR-PNTR REDEFINES LCP-WS-ADDR-COMP USAGE POINTER.

[Table 7 on page 142|identifies statements that deal with primary BLLs.

© Copyright IBM Corp. 1982, 2013 141

Converted CICS

Table 7. Converted CICS commands

Conversion
Element status Notes
ADD C These primary BLL references are changed to ADDRESS
OF special registers and POINTER facilities. For
example:
e ADD ID1, ... TO BLL
is changed to
SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD ID1, ... TO LCP-WS-ADDR-COMP
SET ADDRESS OF REC TO LCP-WS-ADDR-PNTR
e ADD BLL TO ID1, ID2
is changed to
SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
ADD LCP-WS-ADDR-COMP TO ID1, ID2
¢ ADD ID1, ID2 GIVING BLL
is changed to
ADD ID1, ID2 GIVING LCP-WS-ADDR-COMP
SET ADDRESS OF REC TO LCP-WS-ADDR-PNTR
e ADD ID1, BLL1 GIVING BLL2 BLL3
is changed to
SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC1
ADD ID1, LCP-WS-ADDR-COMP GIVING LCP-WS-ADDR-COMP
SET ADDRESS OF REC2 TO LCP-WS-ADDR-PNTR
SET ADDRESS OF REC3 TO LCP-WS-ADDR-PNTR
e ADD ID1, BLL1 GIVING ID2 ID3
is changed to
SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC1
ADD ID1, LCP-WS-ADDR-COMP GIVING ID2 ID3
COMPUTE C The primary BLL references are changed to ADDRESS

OF special register and POINTER facilities. For example:

COMPUTE BLL = exp (BLL)

is changed to
SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC COMPUTE
LCP-WS-ADDR-COMP = EXP (LCP-WS-ADDR-COMP)

COMPUTE ID = exp (BLL)

is changed to
SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC COMPUTE ID
= exp (LCP-WS-ADDR-COMP)

COMPUTE BLL = exp (BLL)

is changed to
COMPUTE LCP-WS-ADDR-COMP = exp (BLL)

142 ccca

Converted CICS

Table 7. Converted CICS commands (continued)

Conversion
Element status Notes

END-EXEC F An error message is generated if an EXEC CICS
statement does not finish with an END-EXEC statement.

C The primary BLLs are replaced by corresponding
EXEC CICS used ADDRESS OF special register. For example:

with SET option EXEC CICS READ ... SET(BLL1)...

is replaced by
EXEC CICS READ ... SET(ADDRESS OF REC1)...

The statements affected are: GETMAIN, READ,
READNEXT, READPREV, READQ, RECEIVE,
RETRIEVE, SEND CONTROL, SEND PAGE, SEND
TEXT, LOAD, CONVERSE, ISSUE RECEIVE, and POST.

C The primary BLL is replaced by corresponding
EXEC CICS used ADDRESS OF special register. The options affected are
with CICS ADDRESS CSA, CWA, EIB, TCTUA, and TWA. For example:

statements EXEC CICS ADDRESS TWA(BLL)

is replaced by
EXEC CICS ADDRESS TWA(ADDRESS OF TWA).

MOVE C The primary BLL references are changed to ADDRESS
OF special register and POINTER facility. For example:
e MOVE BLL1 TO BLL2

is changed to
SET ADDRESS OF RECZ2 TO ADDRESS OF REC1
e MOVE ID TO BLL

is changed to

MOVE ID TO LCP-WS-ADDR-COMP
SET ADDRESS OF REC TO LCP-WS-ADDR-PNTR

e MOVE BLL TO ID

is changed to

SET LCP-WS-ADDR-PNTR TO ADDRESS OF REC
MOVE LCP-WS-ADDR-COMP TO ID

SERVICE RELOAD C SERVICE RELOAD is replaced by CONTINUE.

SUBTRACT C The primary BLL references are changed to ADDRESS
OF special register and POINTER facility. This
conversion is the same as the conversion for ADD.

C=Converted R=Removed F=Flagged I=Information

Note: For secondary BLLs, LCP892 replaces any statement associated with these
BLLS by CONTINUE. For example: ADD 4096 TO BLL is replaced by CONTINUE.

Appendix B. Converted CICS commands 143

Converted CICS

144 ccca

Appendix C. Messages

There are four categories of ABJnnnn messages:

0000-0100
Converter error messages

1002-3999,
9001
LCP compiler error messages

4000-5999
Tokenization diagnostics

6000-6999
Conversion diagnostics from the supplied LCPs

Note: Your LCPs should use message numbers outside these ranges.

Converter error messages

ABJ0000 00
PROCESSING &1

ABJ0012 16
ADD MEMBER &1 FAILED IN FILE &2.33

ABJ0014 16
RESERVED WORD TABLE NOT FOUND

ABJ0015 16
TABLE FILE NOT CREATED

ABJ0020 16
FILE FULL &1.82

The referenced file has to be redefined with more space.

ABJ0021 16

SOURCE OR COPY OUTPUT LIBRARY FULL
ABJ0022 16

INVALID KEY FOR FILE DRWORK OR FILE DRWORK FULL
ABJ0023 16

INVALID FILE/RECORD NAME OR DRWORK FULL
ABJ0025 16

OPTION RECORD MISSING IN CONTROL FILE
ABJ0026 16

SOURCE FILE EMPTY - MEMBER &1
ABJ0027 16

NO TOKEN FILE GENERATED FROM PHASE 1
ABJ0029 16

ERRORS OCCURRED DURING PREVIOUS CONVERSION
ABJ0030 16

PROGRAM &1 NOT CONVERTED

© Copyright IBM Corp. 1982, 2013 145

Messages

ABJ0031 16
SEQUENCE ERROR DURING EXECUTION OF PHASE 3

ABJ0040 16
TERMINAL ERROR FOUND DURING CONVERSION OF &1

ABJ0041 16
INVALID READ OF TOKEN FILE

This message occurs when an LCP is checking the syntax of a COBOL
statement. This message is followed by message LCP0046, that indicates
which LCP issues the message and on which statement. Report these 2
messages to your support organization.

ABJ0042 16

INVALID READ OF &1 FILE - KEY &2 - RC &3
ABJ0043 16

INVALID UPDATE OF &1. FILE - KEY &2 - RC &3
ABJ0044 16

INVALID ADD-TEXT LENGTH - MUST BE GREATER THAN ZERO
ABJ0045 16

INVALID TOKEN LENGTH - TOKEN SEQUENCE IS &1 - ADD-TEXT IS &2
ABJ0046 16

LCP PROGRAM IS &1 - STATEMENT NUMBER IS &2
ABJ0047 16

INVALID RECORD NAME
ABJ0048 16

TOKEN SEQUENCE IS &1 - RECORD NAME IS &2 - RC &3
ABJ0064 16

NO INFORMATION FOR THIS LCP
ABJ0070 16

READ/WRITE ERROR ON FILE &2 FILE STATUS IS &l
ABJ0071 16

WRITE ERROR ON FILE &2 FILE STATUS IS &1
ABJ0072 16

READ ERROR ON FILE &2 FILE STATUS IS &1
ABJ0073 16

OPEN ERROR ON FILE &2 FILE STATUS IS &1
ABJ0074 16

I1/0 ERROR ON FILE SOURCE FILE STATUS IS &l
ABJ0075 16

INVALID KEY IN CONTROL FILE
ABJ0076 16

NO MAP PRODUCED

When CICS option is set to Y (YES), the Linkage Section of the program is
compiled. If no map is produced by the compiler, no conversion is
performed.

ABJ0077 16
ERROR WHILE COMPILING LINKAGE SECTION - CHECK ERRORS WITHIN LINKAGE
SECTION

146 ccca

Messages

When CICS option is set to Y (YES), the Linkage Section of the program is
compiled. If there are compilation errors, they are listed. The CICS
commands are not converted.

ABJ0078 16
PROGRAM NOT CONVERTED

ABJ0079 12
CICS STATEMENTS NOT CONVERTED

ABJ0080 12
BLLS DEFINED IN LINKAGE SECT BUT NO RECORD DEFINED IN LINKAGE
SECTION

When CICS option is set to Y (YES), the Linkage Section of the program is
compiled. BLLs are defined but no records are defined. CICS statements
are not converted.

ABJ0081 08
MORE THAN 200 REDEFINED BLLS IN LINKAGE SECTION - REDEFINED BLLS NOT
FLAGGED

More than 200 BLLs are redefined. The program is not converted.

ABJ0082 16
BLL LENGTH NOT = 4 UNABLE TO PROCESS

A BLL is defined and the length is not four bytes. The program is not
converted.

ABJ0083 16
MORE THAN 200 BLLS DEFINED IN LINKAGE SECTION

More than 200 BLLs are defined in Linkage Section. The program is not
converted. This is a limit of the converter.

ABJ0084 16
PICTURE IS NOT OCLX OR X..C

A picture of a BLL is not 9(4) or X(4). The program is not converted.

ABJ0085 12
NO BLLS DEFINED IN LINKAGE SECTION

There is a Linkage Section, but no BLLs are defined. The CICS statements
are not converted.

ABJ0090 16
XXX ERROR - FILE=XXX - FILE STATUS = nn <KEY=XXXXXX>

Note: The meaning of the file status is given in the IBM COBOL
Programming Guide Release 2 for your platform.

ABJ0092 16
ERROR WRITING COPY MEMBER &1 - DDNAME &2 - RC = &3

RC =8
WRITE 1/0O Error

RC =32
RECORD length different from 80

RC =48
OPEN Error.

Appendix C. Messages 147

Messages

ABJ0093 16
STOW ERROR COPY MEMBER &1 - DDNAME &2 - RC = &3

RC =4
STOW (without R) for member already in the library

RC =12
File not opened.

Note: Parameters &1, &2, &3, and &4 are replaced by the correct
values once the message is printed.

LCP compiler error messages

ABJ1002 08
NAME OR LITERAL EXCEEDS 30 CHARACTERS

ABJ1003 08
MORE THAN 10 WORDS SPECIFIED ON THE SAME LINE

ABJ2001 08
DATA NAME OR PARAGRAPH NAME IS A RESERVED WORD

ABJ2004 08
INVALID SYNTAX IN DATA NAME OR PARAGRAPH NAME

ABJ2005 08
INVALID SYNTAX IN =CONVER

ABJ2006 08
INVALID DATA NAME OR RESERVED WORD

ABJ2007 08
PERIOD OR SPACE NOT FOUND

ABJ2008 08
INVALID PARAGRAPH NAME IN 'PERFORM' STATEMENT

ABJ2009 08
ELEMENT NOT IN AREA B

ABJ2010 08
DUPLICATE PARAGRAPH NAME

ABJ2011 08
TOO MANY PARAGRAPH NAMES IN PROGRAM - MAXIMUM PARAGRAPH NAMES IS 100

ABJ2012 08
NO PARAGRAPH NAME BEFORE FIRST LCP STATEMENT

ABJ2013 08
INVALID STATEMENT

ABJ2014 08
INVALID STATEMENT AFTER PERIOD

ABJ2015 08
PERIOD REQUIRED OR SYNTAX ERROR

ABJ2016 08
INVALID DATA NAME OR LITERAL

ABJ2017 08
DUPLICATE DATA NAME

148 ccca

Messages

ABJ2018 08

TOO MANY DATA NAMES - MAXIMUM 50 PER LCP PROGRAM
ABJ2019 08

NO PICTURE CLAUSE FOR THIS DATA NAME
ABJ2020 08

INVALID PICTURE CLAUSE FOR THIS DATA NAME
ABJ2021 08

'AND' RELATION INVALID IN THIS CONTEXT
ABJ2022 08

PARAGRAPH NAME NOT IN AREA A
ABJ2023 08

FACTOR 1 MUST BE A DATA NAME
ABJ2024 08

INVALID LITERAL OR DATA NAME USED BUT NEVER DEFINED
ABJ2025 08

'UNTIL' OPTION INVALID IN THIS CONTEXT
ABJ2026 08

INVALID CONDITION IN IF, UNTIL, OR, AND STATEMENT
ABJ2027 08

INVALID CLASS OPERAND IN CONDITION STATEMENT
ABJ2028 08

INVALID WORD AFTER OPERAND 2 IN CONDITION
ABJ2030 08

INVALID SYNTAX IN MOVE, ADD, SUBTRACT STATEMENT
ABJ2031 08

FACTOR 2 MUST BE A DATA NAME
ABJ2034 08

'IF' STATEMENT INVALID IN THIS CONTEXT
ABJ2035 08

'OR' RELATION INVALID IN THIS CONTEXT
ABJ2036 08

'ELSE' IS UNMATCHED BY 'IF'
ABJ2037 08

PARAGRAPH NAME ALREADY DEFINED AS DATA NAME
ABJ2038 08

FACTORS 1, 2 MUST BE NUMERIC IN 'ADD' OR 'SUBTRACT' STATEMENT
ABJ2039 08

MOVE ALPHABETIC TO NUMERIC IS INVALID IN 'MOVE'
ABJ2040 08

*CONVER MUST BE FIRST LCP STATEMENT - SYNTAX IS: » IN COLUMN 7,
CONVER OR CONVERQ IN COLUMN 12 TO 18

ABJ2044 08
CORRECT *CONVER AND RETRY

ABJ2045 08
TERMINAL ERROR FOUND IN LCP PROGRAM &1

Appendix C. Messages

149

Messages

ABJ3029 08
PARAGRAPH NAME USED BUT NEVER DEFINED
ABJ3032 08
LCP PROGRAM TOO BIG - MAXIMUM 18000 BYTES PER PROGRAM
ABJ3033 08

INVALID PARAGRAPH NAME 2 IN PERFORM STATEMENT

Tokenization diagnostics

ABJ4001 16
BLL REQUEST AND NO LINKAGE SECTION.

ABJ4002 16
BLL REQUEST AND NO PROCEDURE DIVISION.

ABJ4003 16
SYSTEM PARAMETERS COULD NOT BE SET.

ABJ4004 16
1/0 ERROR OF BLL FILE.

ABJ4005 16
MLE FILE COULD NOT BE OPENED.

ABJ4006 16
PROGRAM ID &1 NOT IN MLE FILE.

ABJ4007 16
RSW TABLE EXPANSION EXCEEDED.

ABJ4008 16
UNEXPECTED END OF DATA ON INPUT PROGRAM SOURCE.

ABJ4009 16
AN I/0 ERROR OCCURRED WHILE READING A COPY LIBRARY MEMBER.

ABJ4010 16
INSUFFICIENT STORAGE AVAILABLE BELOW THE 16M LINE.

ABJ4011 16
INSUFFICIENT STORAGE AVAILABLE FOR CCCA PROCESSING.

ABJ4012 16
OPEN FAILURE ON INPUT SOURCE FILE.

ABJ4013 16
NO INVOCATION OPTIONS SPECIFIED.

ABJ4014 16
INSUFFICIENT STORAGE AVAILABLE FOR CCCA PROCESSING.

ABJ4015 16
I/0 ERROR ON DRWORK VSAM FILE.

ABJ4016 16
ERRORS IN DATE IDENTIFICATION FILE INPUT. CONVERSION PROCESS
TERMINATED.

ABJ4017 16
&1 DATASET COULD NOT BE OPENED.

ABJ4018 16
&1 DATASET 1/0 ERROR.

150 ccca

Messages

ABJ4019 16
&1 DATASET COULD NOT BE CLOSED.

ABJ4020 16
CRITICAL DATASET COULD NOT BE CLOSED.

ABJ4024 16
AN ERROR OCCURRED WHILE ATTEMPTING TO LOAD MODULE &1.

ABJ4025 16
AN ERROR OCCURRED WHILE ATTEMPTING TO DELETE MODULE &1.

ABJ4026 16
LISTING HEADING OR LISTING ANNOTATION LINE(S) ID "&1" WAS NOT FOUND
IN THE LISTING HEADER DATA FILE.

ABJ4027 16
AN ERROR OCCURRED DURING RETRIEVAL OF DATA FROM THE LISTING HEADER
DATA FILE.

ABJ4028 16
A REQUEST WAS ISSUED TO EXPAND A STATIC TABLE.

ABJ4029 16
THERE WAS AN ATTEMPT TO PRIME A TABLE THAT WAS PREVIOUSLY PRIMED.

ABJ4030 16
THERE WAS AN ATTEMPT TO FREE A TABLE THAT WAS PREVIOUSLY FREED.

ABJ4031 16
LANGUAGE TABLE 88&&&&&& COULD NOT BE DYNAMICALLY LOADED.

ABJ4032 16
INSUFFICIENT STORAGE TO DYNAMICALLY LOAD LANGUAGE TABLE.

ABJ5000 00
DATE IDENTIFICATION FILE ERROR IN RECORD &1 COLUMN $$.

ABJ5001 00
UNEXPECTED DATA FOUND BEFORE PROGRAM NAME. SKIPPED TO THE NEXT
PROGRAM NAME.

ABJ5002 00
UNEXPECTED DATA FOUND BEFORE LINE NUMBER. SKIPPED TO THE NEXT LINE
NUMBER.

ABJ5003 00
RESERVED WORD "OF" USED IMPROPERLY.

ABJ5004 00
INVALID COBOL USER WORD IN DATA NAME.

ABJ5005 00
UNRECOGNIZED DATE FORMAT SPECIFICATION.

ABJ5006 00
UNEXPECTED DATA FOUND WHERE "OF" EXPECTED.

Conversion diagnostics from LCPs

ABJ6000 08
x%*%%+% MANUAL UPDATE REQUIRED

ABJ6001 00
'THEN' IS REMOVED

Appendix C. Messages 151

Messages

152 ccca

ABJ6002 00
LCP-xxx DATE/TIME DATA ITEMS GENERATED IN WORKING-STORAGE FOR
CURRENT-DATE/TIME-OF-DAY/WHEN-COMPILED CONVERSIONS

ABJ6003 00
NEW CODE GENERATED FOR CURRENT-DATE

ABJ6004 08
UNABLE TO SUCCESSFULLY CONVERT TRANSFORM TO INSPECT w#w*x%%x MANUAL
UPDATE REQUIRED

ABJ6005 00
NEW CODE GENERATED FOR TIME-OF-DAY

ABJ6006 08
DUPLICATE CHARACTERS FOUND IN "FROM" LITERAL #w=**x%+ MANUAL UPDATE
REQUIRED

ABJ6007 00
NEW CODE GENERATED FOR WHEN-COMPILED

ABJ6008 04
RELATIVE KEY DEFINED AS GROUP *MANUAL UPDATE MAY BE REQUIRED

ABJ6009 00
MULTIPLE MOVE CORRESPONDING CHANGED TO SEPARATE MOVES

ABJ6010 00
REDEFINES CLAUSE IN FD REMOVED

ABJ6011 00
REMARKS CHANGED TO COMMENT

ABJ6012 00
VALUE CLAUSE IS CHANGED

ABJ6013 08
DATA EXCEEDS 28 CHARACTERS DATA NOT RIGHT JUSTIFIED ###++% MANUAL
UPDATE REQUIRED

ABJ6014 00
COMBINED EXPRESSION IS CHANGED

ABJ6015 04
NEW CODE GENERATED FOR WHEN-COMPILED #** WARNING CENTURY VALUE NOT
SET, MANUAL UPDATE MAYBE REQD

ABJ6016 00
HYPHEN ADDED TO DATE

ABJ6017 00
EJECT REPLACED BY /

ABJ6018 00
TALLY IS INITIALIZED

ABJ6019 00
EXAMINE REPLACED BY INSPECT

ABJ6020 04
MOVE ALL STATEMENT FOUND 68 STANDARD INTERPRETATION *MANUAL UPDATE
MAY BE REQUIRED

ABJ6021 00
OTHERWISE REPLACED BY ELSE

Messages

ABJ6022 00
NOTE CHANGED TO COMMENT

ABJ6023 08
CURRENCY SIGN CLAUSE FOUND ##==%%x% MANUAL UPDATE REQUIRED

ABJ6024 00
OPTIONAL IS REMOVED

ABJ6025 08
UNSTRING ... DEL. BY ALL FOUND 68 STANDARD INTERPRETATION s+
MANUAL UPDATE REQUIRED

ABJ6026 04
SCALED VARIABLE FOUND 68 STANDARD INTERPRETATION *MANUAL UPDATE MAY
BE REQUIRED

ABJ6027 04
IF TAPE IS 'UNLABELLED', CHECK JCL FOR A MATCHING TLBL STATEMENT AND
REMOVE

ABJ6028 04
UPSI SWITCHES MAY ONLY BE SET USING THE LE/VSE UPSI RUN-TIME OPTION
##x%xJCL UPDATE MAY BE REQURED

ABJ6030 08

ASCII FILE TO BE CHECKED
ABJ6031 00

SPECIAL-NAMES IS GENERATED
ABJ6032 04

MNEMONIC NAME FOUND *MANUAL UPDATE MAY BE REQUIRED
ABJ6033 00

INTEGER IS REMOVED
ABJ6034 08

FOR MULTIPLE REEL/UNIT IS REMOVED #x#*%+ MANUAL UPDATE REQUIRED
ABJ6035 00

NOMINAL IS CHANGED TO RELATIVE FOR VSAM RRDS
ABJ6036 00

PERIOD ADDED AT THE END OF THE PARAGRAPH
ABJ6037 00

RESERVE AREA IS CHANGED
ABJ6038 00

FILE-LIMIT CLAUSE IS REMOVED
ABJ6039 00

PROCESSING MODE CLAUSE IS REMOVED
ABJ6040 00

APPLY CLAUSE IS REMOVED
ABJ6041 08

TOTALING/TOTALED AREA REMOVED ##s##%+ MANUAL UPDATE REQUIRED
ABJ6042 00

DISP/POSITIONING OPTION IN CLOSE IS REMOVED
ABJ6043 00

LEAVE/REREAD/DISP OPTION IN OPEN IS REMOVED

Appendix C. Messages 153

Messages

ABJ6044 08

GIVING OPTION IS REMOVED s###x++ MANUAL UPDATE REQUIRED
ABJ6045 08

USE BEFORE IS REMOVED ##%++ MANUAL UPDATE REQUIRED
ABJ6046 00

WRITE...AFTER POSITIONING...CHANGED TO WRITE...AFTER ADVANCING
ABJ6047 00

LCP-ASA DATA NAME IS GENERATED
ABJ6048 00

LCP-WRITE-... SECTION IS ADDED
ABJ6049 08

FILE TO BE CONVERTED TO VSAM RRDS stk stoboksokstobobosokk tok
ABJ6050 00

PERIOD ADDED
ABJ6051 00

TO IS REMOVED
ABJ6052 00

ACTUAL IS CHANGED TO RELATIVE FOR VSAM RRDS
ABJ6053 00

SAME AREA CHANGED TO SAME RECORD AREA
ABJ6054 08

LABEL RECORDS CHANGED TO STANDARD
ABJ6055 00

RECORDING MODE IS REMOVED
ABJ6056 00

SEEK IS REMOVED
ABJ6057 08

TRACK-LIMIT CLAUSE IS REMOVED #sx#xx+ MANUAL UPDATE REQUIRED
ABJ6058 08

FILE TO BE CONVERTED TO VSAM KSDS sskstbobkoktobhnkntx
ABJ6059 00

THAN IS REMOVED
ABJ6060 00

TRACK AREA CLAUSE IS REMOVED
ABJ6061 08

USING IS REMOVED ##%sxxx+ CHECK IF GENERIC KEY
ABJ6062 00

LCP-EOP DATA NAME IS GENERATED
ABJ6063 00

SUPERFLUOUS 'INTO' REMOVED
ABJ6064 00

ADDITIONAL ASSIGNMENT NAMES REMOVED
ABJ6065 08

REPORT WRITER STATEMENT FOUND #==**x+* MANUAL UPDATE REQUIRED

154 ccca

Messages

ABJ6066 08
USE FOR DEBUGGING ONLY ALLOWED FOR PROCEDURE NAME #x#s#x MANUAL
UPDATE REQUIRED

ABJ6067 08
ON STATEMENT FOUND =#*x=%%x MANUAL UPDATE REQUIRED

ABJ6068 04
READY/RESET TRACE IS REMOVED

ABJ6069 00
EXHIBIT CHANGED TO DISPLAY

ABJ6070 00
EXHIBIT CHANGED TO DISPLAY TREATED AS EXHIBIT NAMED

ABJ6071 08
DEBUG IS NOT SUPPORTED

ABJ6072 08
DATA EXCEEDS 28 CHARACTERS DATA SHOULD BE BETWEEN QUOTES sskwxxx
MANUAL UPDATE REQUIRED

ABJ6073 08
COMMUNICATIONS NOT SUPPORTED #*#%x%x MANUAL UPDATE REQUIRED

ABJ6074 00
NOMINAL KEY FIELD MOVED TO RECORD KEY FIELD

ABJ6075 08
wwxxkx ERROR FILE NAME sssws

Check if the SELECT statement, ASSIGN clause, and FD definition match.
This takes place when the converter writes a record in DRWORK file with
a duplicate key. If the program compiles without error at the source
language level, report the problem, providing the list of the Input-Output
Section in the Environment Division and all the File Descriptions (FD) in
the Data Division. Also provide a printout of the DRWORK.AB]J file.

ABJ6076 00
PROGRAM-ID PARAGRAPH IS ADDED
ABJ6077 08
QUALIFIED KEY NOT SUPPORTED #w#s##% MANUAL UPDATE REQUIRED
ABJ6078 00
NOMINAL KEY IS REMOVED
ABJ6079 04
% WARNING POSSIBLE SUBSCRIPT EVALUATION DIFFERENCES
ABJ6080 00
FILE STATUS CLAUSE IS ADDED
ABJ6081 00
RECORD KEY FIELD MOVED BACK TO NOMINAL KEY
ABJ6082 00
NEW ORGANIZATION IS ADDED
ABJ6084 04

"NOT" IN ABBREVIATED COMBINED RELATION CONDITION. CONDITION IS NOW
EXPANDED DIFFERENTLY. *MANUAL UPDATE REQUIRED

Appendix C. Messages 155

Messages

156 ccca

ABJ6085 00
DECLARATIVE IS ADDED
ABJ6086 08
NO FILE STATUS TEST s##x+x MANUAL UPDATE REQUIRED
ABJ6087 00
CODE-SET CLAUSE IS ADDED
ABJ6088 00
LANGLEVEL 1 COPY IS CHANGED
ABJ6089 00
UPSI CHANGED TO CONDITION NAME
ABJ6090 08
ONLY CONDITION NAME IS ALLOWED #s###%++ MANUAL UPDATE REQUIRED
ABJ6091 00
TRANSFORM REPLACED BY INSPECT
ABJ6092 04

MANUAL CHANGE MAY BE REQUIRED IF THIS INDEPENDENT SECTION IS
PERFORMED OUTSIDE THE SECTION

ABJ6093 00

DATA ITEM LCP-FILE-STATUS IS GENERATED
ABJ6094 00

FILE STATUS TEST IS ADDED
ABJ6095 00

LABEL CLAUSE IS REMOVED
ABJ6096 04

MULTIPLE "NOT" FOUND #%#**MANUAL UPDATE MAY BE REQUIRED
ABJ6097 00

KEY DATA ITEM CHANGED TO BE THE SUBJECT
ABJ6098 00

ASSIGNMENT NAME IS CHANGED
ABJ6099 08

PERFORM KEYCALC IS ADDED USER SHOULD PROVIDE KEYCALC SECTION

kkkkhkkkkhkkkhkkk

ABJ6103 99
kkkkkkhkkhkhkkhhkkhkkhkhkkhkhkhkkhkkkhkkhkx*

*% DATA NAMES TO BE CHECKED ==

B R R R S

ABJ6104 99

x USED IN LABEL CLAUSE *
ABJ6105 99

x USED IN TOTALING CLAUSE *
ABJ6106 99

x USED IN TOTALED CLAUSE *
ABJ6107 99

x USED IN GIVING OPTION =
ABJ6109 99

* USED AS UPSI *

Messages

ABJ6110 99
* USED AS SCALED VARIABLE *
ABJ6111 00
PICTURE CHANGED FOR RELATIVE KEY
ABJ6112 08
PROC/FILE NAME NOT ALLOWED #*#x%+ MANUAL UPDATE REQUIRED
ABJ6114 08
INVALID PICTURE FOR RELATIVE KEY ##%#xx+ MANUAL UPDATE REQUIRED
ABJ6115 00
SYSTEM NAME CHANGED TO IBM-370
ABJ6116 00
ON STATEMENT CHANGED TO IF
ABJ6117 00
ON COUNTER GENERATED IN WORKING STORAGE
ABJ6118 08
TOO MANY QUALIFIERS s###%+% MANUAL UPDATE REQUIRED
ABJ6119 00
RECORDING MODE CLAUSE REMOVED
ABJ6122 08
RELATIVE KEY NOT FOUND RELATIVE FILE NAME IS :
ABJ6124 04
EXEC STATEMENT FOUND *MANUAL UPDATE MAY BE REQUIRED
ABJ6125 00
USER-DEFINED WORD IS RESERVED WORD IN TARGET LANGUAGE SUFFIX HAS
BEEN ADDED.
ABJ6126 99
K - *

= END OF COBOL CONVERSION =
* 5648-B05 COBOL CONVERSION =

ABJ6127 08
RELATIVE KEY NAME NOT DEFINED IN WORKING-STORAGE SECTION KEY IS :

ABJ6128 00
RECORD KEY IS ADDED

ABJ6132 00
THEN REPLACED BY THAN

ABJ6133 00
WORKING-STORAGE SECTION ADDED

ABJ6134 08
ILLEGAL USE OF CURRENT-DATE ##xxx+ MANUAL UPDATE REQUIRED

ABJ6135 08
ILLEGAL USE OF TIME-OF-DAY s+ MANUAL UPDATE REQUIRED

ABJ6136 00
NEXT SENTENCE ADDED

ABJ6142 00
IDENTIFIER CHANGED TO LITERAL

Appendix C. Messages 157

Messages

ABJ6144 08

COM-REG SPECIAL REGISTER FOUND #ss###x+ MANUAL UPDATE REQUIRED
ABJ6145 08

NSTD-REELS SPECIAL REG FOUND ##%#% MANUAL UPDATE REQUIRED
ABJ6146 08

SORT-OPTION CLAUSE IS REMOVED ####x+ MANUAL UPDATE REQUIRED
ABJ6147 00

ENTER STATEMENT IS REMOVED
ABJ6148 00

LCP NOT FOUND - RECOMPILE LCP
ABJ6151 00

RECORDS WORD IS ADDED
ABJ6152 00

PARAGRAPH CHANGED TO COMMENT
ABJ6153 08

ERROR WRITING CONTROL FILE FILE CONVERSION MAY BE WRONG #*#%%x%*%%%
CHECK CONTROL FILE

ABJ6160 00

CONFIGURATION SECTION ADDED
ABJ6161 08

SORT-OPTION CLAUSE IS REMOVED ####x+ MANUAL UPDATE REQUIRED
ABJ6162 08

NSTD-REELS SPECIAL REG FOUND %% MANUAL UPDATE REQUIRED
ABJ6170 00

ALPHABET WORD IS ADDED
ABJ6171 00

ALPHABETIC CHANGED TO ALPHABETIC-UPPER
ABJ6172 00

EXIT PROGRAM IS ADDED
ABJ6173 00

ALPHABET CLAUSE ADDED FOR ASCII FILE
ABJ6174 00

ACTUAL LENGTH ADDED TO VARIABLE LENGTH RECEIVING ITEM
ABJ6175 08

MAXIMUM LENGTH USED FOR VARIABLE LENGTH RECEIVING ITEM w#skx+*
MANUAL UPDATE REQUIRED

ABJ6176 00
ABEND CODE GENERATED IN WS

ABJ6177 00
RECORD CLAUSE IS REMOVED

ABJ6178 08
UPST NOT ALLOWED AS QUALIFIER =#*%x%%% MANUAL UPDATE REQUIRED

ABJ6179 00
CONTINUE STATEMENT IS ADDED

158 ccca

Messages

ABJ6180 08

SYMBOL P IN PIC NOT ALLOWED FOR RELATIVE KEY #*#%%x* MANUAL UPDATE

REQUIRED

ABJ6181 00
OBSOLETE ELEMENT IS REMOVED

ABJ6182 00
VALUES CHANGED TO VALUE

ABJ6183 00
LINE/LINES IS REMOVED

ABJ6184 00
SIGN IS REMOVED IN VALUE

ABJ6185 08

COPY FOUND IN NOTE END OF NOTE NOT PROCESSED w#*x%%x MANUAL UPDATE

REQUIRED
ABJ6186 04

OBSOLETE ELEMENT IS REMOVED #==**x%x MANUAL UPDATE MAYBE REQUIRED

ABJ6200 08
LEVEL 01 BLL FOUND #*#*%%%x MANUAL UPDATE REQUIRED

ABJ6201 00
POINTER OPTION IN EXEC CICS CHANGED TO ADDRESS OF

ABJ6202 00
SERVICE RELOAD REPLACED BY CONTINUE

ABJ6203 00
BLL'S ARE REMOVED

ABJ6204 08
UNIDENTIFIED BLL %% MANUAL UPDATE REQUIRED

ABJ6205 08
PRIMARY BLL FOUND NOT IN MOVE CALL ADD SUBTRACT %%+ MANUAL
UPDATE REQUIRED

ABJ6206 00

SERVICE RELOAD IS REMOVED
ABJ6207 00

BLL CONVERTED TO SET POINTER SET ADDRESS OF ...
ABJ6208 00

STATEMENT WITH SECONDARY BLL REPLACED BY CONTINUE
ABJ6209 00

BLL REPLACED BY ADDRESS OF ...
ABJ6210 08

UNDEFINED/REDEFINED BLL FOUND s#ss##%% MANUAL UPDATE REQUIRED
ABJ6211 08

BLL FOUND ###%#% MANUAL UPDATE REQUIRED
ABJ6212 00

WORKING POINTER FOR CICS ADDED TO WORKING STORAGE
ABJ6213 08

MULTIPLE MOVE NOT PROCESSED #=#*%x%* MANUAL UPDATE REQUIRED

Appendix C. Messages

159

Messages

ABJ6214 08
MOVE CORR NOT PROCESSED ##%% MANUAL UPDATE REQUIRED

ABJ6215 08
UNDEFINED STATEMENT WITH BLL #%%%x%* MANUAL UPDATE REQUIRED

ABJ6216 08
BLL MIXED WITH IDENTIFIER(S) IN A MOVE, ADD OR SUBTRACT sssssss
MANUAL UPDATE REQUIRED

ABJ6217 08
MULTIPLE ADD NOT PROCESSED ##w##% MANUAL UPDATE REQUIRED

ABJ6218 00
PRIMARY BLL IN ADD SUBTRACT CHANGED TO ADDRESS OF ...

ABJ6219 08
MULTIPLE BLL BEFORE GIVING IN ADD OR SUBTRACT STATEMENT sssssss
MANUAL UPDATE REQUIRED

ABJ6220 00
PRIMARY BLL IN COMPUTE CHANGED TO ADDRESS OF ..
ABJ6221 08
ILLEGAL USE OF SECONDARY BLL ###%+% MANUAL UPDATE REQUIRED
ABJ6222 04
MORE THAN 3 LEVELS OF QUALIFICATION ON TABLE. *MANUAL UPDATE MAY BE
REQUIRED
ABJ6223 00
SUPERFLUOUS "TO" REMOVED
ABJ6224 04
COPY...REPLACING ENCOUNTERED *MANUAL UPDATE MAY BE REQUIRED
ABJ6225 08
BRACKETS MOVED *MANUAL UPDATE MAY BE REQUIRED
ABJ6226 00
ENVIRONMENT DIVISION MOVED.
ABJ6227 08
END-EXEC NOT FOUND *MANUAL UPDATE REQUIRED
ABJ6228 00
BLANK WHEN ZERO IS REMOVED
ABJ6229 08
ACTUAL KEY INCOMPATIBLE WITH FILE ORGANIZATION *MANUAL UPDATE
REQUIRED
ABJ6230 08
CONFIGURATION SECTION OUT OF ORDER. *MANUAL UPDATE REQUIRED
ABJ6231 08
VALUE SHOULD NOT START IN AREA A. *MANUAL UPDATE MAY BE REQUIRED
ABJ6233 00
ZEROS/ZEROES REPLACED.
ABJ6234 08
STRING INTO SAME AREA. *MANUAL UPDATE REQUIRED
ABJ6235 00

SUFFIX - DATANAME SAME AS PROGRAM NAME.

160 ccca

Messages

ABJ6236 00
LITERAL DELIMITER ADDED.

ABJ6237 08
LITERAL DELIMITER MISSING. *MANUAL UPDATE REQUIRED

ABJ6238 08
REFERENCE TO FIRST BLL CAN NOT BE CONVERTED. *MANUAL UPDATE REQUIRED

ABJ6239 08
COPYBOOK NAME MUST START WITH ALPHABETIC CHARACTER. *MANUAL UPDATE
REQUIRED

ABJ6240 08
THE ON OVERFLOW PHRASE OF THE CALL STATEMENT WILL NOW EXECUTE UNDER
MORE CONDITIONS. *MANUAL UPDATE MAY BE REQUIRED

ABJ6241 08
COMPARISONS BETWEEN A SCALED INTEGER AND A NONNUMERIC WILL NOW BE
PERFORMED DIFFERENTLY. *MANUAL UPDATE MAY BE REQUIRED

ABJ6242 08
THIS STATEMENT WILL NO LONGER USE THE COLLATING SEQUENCE IN THE
OBJECT-COMPUTER PARAGRAPH. *MANUAL UPDATE MAY BE REQUIRED

ABJ6243 08
THE ON SIZE ERROR PHRASE WILL NO LONGER BE EXECUTED FOR INTERMEDIATE
RESULTS. *MANUAL UPDATE MAY BE REQUIRED

ABJ6244 08
BLL CELL DOES NOT REFERENCE A 01 LEVEL RECORD. VERIFY BLL CELL
USAGE. *MANUAL UPDATE REQUIRED

ABJ6245 08
RECORD WITH INSUFFICIENT BLL CELLS AVAILABLE TO PROVIDE
ADDRESSABILITY. *MANUAL UPDATE REQUIRED

ABJ6246 08
CONDITIONAL VARIABLE WILL NO LONGER BE RIGHT JUSTIFIED. *MANUAL
UPDATE REQUIRED

ABJ6247 08
CONDITIONAL VARIABLE WILL NOW BE SET TO ZERO (NOT SPACES). *MANUAL
UPDATE REQUIRED

ABJ6248 08
PICTURE CLAUSE OF CONDITIONAL VARIABLE HAS EDITING SYMBOLS. RESULTS
WILL BE DIFFERENT. *MANUAL UPDATE REQUIRED

ABJ6249 08
THE COLON WILL NOW BE TREATED AS A SEPARATOR. RESULTS MAY BE
DIFFERENT. *MANUAL UPDATE MAY BE REQUIRED

ABJ6250 08
LOWERCASE CHARACTERS WILL NOW BE TREATED AS THEIR UPPERCASE
EQUIVALENTS. *MANUAL UPDATE MAY BE REQUIRED

ABJ6251 08
THE NON-COBOL CHARACTERS IN THE REPLACE CLAUSE WILL NOW BE
DIAGNOSED. *MANUAL UPDATE REQUIRED

ABJ6252 08
DIFFERENT FILE STATUS VALUES WILL NOW BE RETURNED. *MANUAL UPDATE
MAY BE REQUIRED

Appendix C. Messages 161

Messages

162 ccca

ABJ6253 08
RULES FOR AUGMENTING VARIABLES HAVE CHANGED. IF DEPENDENCIES BETWEEN
VARIABLES EXIST, THEN *MANUAL UPDATE MAY BE REQUIRED

ABJ6254 08
PICTURE CLAUSE OF A RECEIVING FIELD CONSISTS OF A'S AND B'S - NO
LONGER CLASSED ALPHABETIC *MANUAL UPDATE REQUIRED

ABJ6255 08
PICTURE CLAUSE OF A RECEIVING FIELD CONSISTS OF A'S AND B'S - NO
LONGER PERMITTED. *MANUAL UPDATE REQUIRED

ABJ6256 08
CALL IDENTIFIER HAS A PICTURE CLAUSE CONSISTING OF A'S AND B'S - NO
LONGER PERMITTED. *MANUAL UPDATE REQUIRED

ABJ6257 08
CANCEL IDENTIFIER HAS PICTURE CLAUSE CONSISTING OF A'S AND B'S - NO
LONGER PERMITTED. *MANUAL UPDATE REQUIRED

ABJ6258 08
BLANK LINES AND COMMENT LINES IN TEXT THAT MATCH PSEUDO-TEXT ARE NOW
TREATED DIFFERENTLY. *MANUAL UPDATE MAY BE REQUIRED

ABJ6259 08
MODE SPECIFIC DECLARATIVES IN CONTAINED PROGRAMS NOW TAKE PRECEDENCE
OVER THIS ONE. *MANUAL UPDATE MAY BE REQUIRED

ABJ6260 08
ON OVERFLOW PHRASE CAN NOW BE INVOKED WHEN RUNNING UNDER CICS.
*MANUAL UPDATE MAY BE REQUIRED

ABJ6261 08
ON EXCEPTION PHRASE CAN NOW BE INVOKED WHEN RUNNING UNDER CICS.
«MANUAL UPDATE MAY BE REQUIRED

ABJ6262 00
'OR' HAS BEEN INSERTED BETWEEN THE DELIMITERS IN THE DELIMITED BY
PHRASE.

ABJ6263 00
THE 'IS' HAS BEEN REMOVED FROM THE POINTER PHRASE.

ABJ6264 08
THE REVERSED OPTION IS NOW ONLY VALID FOR SINGLE REEL FILES. *MANUAL
UPDATE MAY BE REQUIRED

ABJ6265 08
PHRASES IN THE OCCURS CLAUSE ARE NOT IN THE CORRECT SEQUENCE.
*MANUAL UPDATE REQUIRED

ABJ6266 08
THE FOR REMOVAL OPTION IS NOW TREATED AS A COMMENT. *MANUAL UPDATE
MAY BE REQUIRED

ABJ6267 08
QUALIFIED INDEXES ARE NO LONGER PERMITTED. *MANUAL UPDATE IS
REQUIRED.

ABJ6269 00
OLD OPTIONS REMOVED

ABJ6270 00
NEW COMPILER OPTION ADDED

Messages

ABJ6271 00
DATA NAME IS THE SAME AS THE PROGRAM NAME. SUFFIX HAS BEEN ADDED.

ABJ6272 04
DATE FORMAT CLAUSE NOT ADDED DATE FORMAT INCOMPATIBLE WITH DATA
ITEM'S PICTURE CLAUSE

ABJ6273 04
DATE FORMAT CLAUSE NOT ADDED - NOT PERMITTED WITH BLANK WHEN ZERO
CLAUSE

ABJ6274 04
DATE FORMAT CLAUSE NOT ADDED - NOT PERMITTED WITH JUSTIFIEDCLAUSE

ABJ6275 04
DATE FORMAT CLAUSE NOT ADDED - NOT PERMITTED WITH SIGN CLAUSE

ABJ6276 04
DATE FORMAT CLAUSE NOT ADDED - DATA ITEM ALREADY HAS ONE

ABJ6277 04
DATE FORMAT CLAUSE NOT ADDED - DATE FIELDS THAT ARE GROUP ITEMS MUST
HAVE USAGE DISPLAY

ABJ6278 04
DATE FORMAT CLAUSE NOT ADDED - INCOMPATIBLE WITH SPECIFIED OR
ASSUMED USAGE CLAUSE

ABJ6279 04
DATE FORMAT CLAUSE NOT ADDED - INCOMPATIBLE WITH EXTERNAL CLAUSE IN
01 ENTRY

ABJ6280 04
DATE FORMAT CLAUSE NOT ADDED - INCOMPATIBLE WITH EXTERNAL CLAUSE IN
FD OR SD ENTRY

ABJ6281 04
DATE FORMAT CLAUSE ADDED

ABJ6284 04
* WARNING - COMPILER WARNING MESSAGES WILL BE GENERATED

ABJ6300 08
STATEMENT IS INVALID IN A CICS PROGRAM %+ MANUAL UPDATE REQUIRED

ABJ6301 04
31 BIT ESA ADDRESSES WILL BE TREATED AS NEGATIVE NUMBERS: RESULTS
MAY BE UNPREDICTABLE #%* MANUAL UPDATE RECOMMENDED

ABJ6302 04
FIELD USED IN SET ADDRESS STATEMENT CHANGED TO USAGE IS POINTER

ABJ6304 00
COPYBOOK NAME IS NOW A LITERAL

ABJ6305 04
BACK-TO-BACK PARENTHESES REMOVED

ABJ6306 04
FILE SECTION ADDED

ABJ6307 08
CONFIGURATION SECTION OUT OF ORDER

Appendix C. Messages 163

Messages

ABJ6308 00
PERIOD REMOVED

ABJ6309 00
"IS" IS REMOVED

ABJ6310 08
END-OF-PAGE PHRASE NOT ALLOWED WITHOUT A LINAGE CLAUSE FILE
DESCRIPTION ENTRY *MANUAL UPDATE IS REQUIRED

ABJ6311 16
MORE THAN 999999 CHANGE RECORDS HAVE BEEN CREATED FOR A TOKEN -
POSSIBLE PROGRAM ERROR ##% CONTACT IBM'S CCCA HELPLINE

ABJ6312 00
PERIOD ADDED AFTER DIVISION HEADER

ABJ6313 00
PERIOD ADDED AFTER SECTION HEADER

ABJ6317 00
SUPERFLUOUS "IF" REMOVED PARENTHESES ADDED

ABJ6401 08
UNEXPECTED END OF COPY STATEMENT. COPY STATEMENT NOT CONVERTED

ABJ6402 08
NESTED COPY STATEMENT WITHIN COPY WITH REPLACING PHRASE. COPY
STATEMENT NOT CONVERTED

ABJ6403 08
COPY STATEMENT WITH REPLACING PHRASE WITHIN A NESTED COPY. COPY
STATEMENT NOT CONVERTED

ABJ6404 08
COPY STATEMENT HAS INVALID SYNTAX. COPY STATEMENT NOT CONVERTED

ABJ6405 08
COPY STATEMENT HAS INVALID SYNTAX. MISSING "BY". COPY STATEMENT NOT
CONVERTED

ABJ6406 08
LIBRARY MEMBER WAS EMPTY.

ABJ6407 08
MEMBER NOT FOUND IN COPY LIBRARY.

ABJ6408 08
COPY STATEMENT HAS NULL OR INVALID PSEUDO-TEXT-1. COPY STATEMENT NOT
CONVERTED

ABJ6409 08
PSEUDO-TEXT ENDING DELIMITER "==" WAS MISSING. COPY STATEMENT NOT
CONVERTED

ABJ6410 08
A RIGHT PARENTHESIS MISSING IN AN IDENTIFIER SPECIFIED IN THE
REPLACING PHRASE. COPY STATEMENT NOT CONVERTED

ABJ6411 08
THE COPY LIBRARY WAS NOT FOUND

ABJ6412 08
COPY STATEMENT CAUSES RECURSION.

164 ccca

Messages

ABJ9001 00
&1 ERRORS FOUND DURING COMPILATION

Appendix C. Messages 165

Messages

166 ccca

Appendix D. LCP reserved words

With the exception of predefined data item names and LCP function names, this
list identifies all reserved words of the LCP compiler. Only those in bold italics
have a meaning to the LCP compiler. The other words in the list have no meaning
to the LCP compiler, but if used they will elicit an error message from the
compiler.

This appendix documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of CCCA.

See |Appendix E, “Predefined data items,” on page 175|for a list of predefined data
items and [Appendix F, “List of LCP functions,” on page 187|for a list of LCP
functions.

The following words are reserved for the LCP compiler. Do not confuse this list of
words with the COBOL compiler's list of reserved words. For a complete list of
COBOL reserved words, please refer to the appropriate COBOL Language Reference
manual.

accept comp
access comp-3

acquire
comp-4

add computational

advancing
computational-3

after computational-4

all compute
alphabetic
configuration

also contains
alter control

alternate
controls

and control-area
apply copy

are core-index
area corr

areas corresponding

ascending
count

assign csp

at currency

© Copyright IBM Corp. 1982, 2013 167

LCP reserved words

attribute-data
c01

author

data

date
before date-compiled
blank date-written
block day

bottom
de

by debug-contents
debug-item

call debug-line

cancel debug-name

cd debug-sub-1

cf debug-sub-2

ch debug-sub-3

changed
debugging

character
decimal-point

characters
declaratives

clock-units
delete

close delimited
cobol delimiter
code depending

code-set
descending

collating
destination

column
detail

comma

disable

communication
display

divide indexed
division
indic

168 ccca

down indicate

drop indicator

duplicates
indicators
dynamic
initial
initiate
egi input

else input-output
emi inspect

enable
installation

end into

end-change
invalid

end-of-page
is
enter

environment
just

eop justified
equal

error key

esi
every label
exception

last
exclusive

leading
exhibit

left
exit length
extend

less

limit
fd limits

file linage

file-control
linage-counter

filler line

final lines

LCP reserved words

Appendix D. LCP reserved words 169

LCP reserved words

first line-counter

footing
linkage

for local-data

format
lock

from low-value
low-values

generate

giving memory
go merge

greater
message

group mode
modules

heading
move

high-value
multiple

high-values
multiply

named

I-O native

I-O-control
negative

identification
next

if no

in not

index note

number
reports

numeric
requestor

rerun

object-computer
reserve

occurs reset
of return

off reversed

170 ccca

omitted
rewind

on rewrite
open rf

optional
rh

or right

organization
rolling

output
rounded

overflow
run

page same

page-counter

sd
perform

search
pf section

ph security
pic segment

picture

segment-limit

plus select

pointer
send
position
sentence
positive
separate
printing
sequence

procedure
sequential

procedures
set

proceed
sign

program
size

program-id
sort

LCP reserved words

Appendix D. LCP reserved words

171

LCP reserved words

sort-merge
queue source
quote source-computer

quotes
space

spaces

random
special-names

rd standard
read standard-1

receive
start

record starting

records
status

redefines
stop

reel string

references
subtract

relative
sub-queue-1

release
sub-queue-2

remainder
sub-queue-3

removal
sum

renames
suppress

replacing
symbolic

report sync

reporting
synchronized

system-console

upon
system-shutdown
upsi-0
upsi-1
table upsi-2
tallying
upsi-3

172 ccca

tape upsi4

terminal
upsi-b

terminate
upsi-6

text upsi-7
than usage
then use

through
using

thru

time value
times values
to varying
top

trace when

trailing
with

transaction
words

true working-storage

type write

unit zero

unstring
zeroes

until zeros

up

LCP reserved words

Appendix D. LCP reserved words 173

LCP reserved words

174 ccca

Appendix E. Predefined data items

This appendix documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of CCCA.

The following list describes predefined data items you can use in LCPs.

Access to data contained in these data items is available:
e At all times
* As a result of using an LCP function

Note: Do not code Data Division statements in your LCPs for predefined data

items.

Name

Description

ACCESS-FILE-MODE
X(1) FILE record

Access-type: I Indexed S
R Relative D

Sequential
Dynamic

ADD-GROUP
X(30) CHANGE data set

Used to define the concatenation of data; ADD-LENGTH, ADD-TEXT.

ADD-LENGTH
9(2) CHANGE data set

Length of token to be added or modified.

ADD-TEXT
X(30) CHANGE data set

Text to be added or modified.

ASCII-FILE
X(1) FILE record

Y if the file has ASCII-data.

ASSOCIATE NAME
X(30) COPY record

Data name defined in the original source program being copied.

BLL-NAME
X(30) CICS file

Name of BLL found in the Linkage Section.

BYPASSED-REF-MOD
X(1) Interpreter

Identifies when Reference modification has been bypassed
as a result of a call to the function BYPASS-IDENTIFIER.
Y Reference modification has been bypassed

N Reference modification was not present

Byte 3 of BYPASSED-REF-TYPES.

BYPASSED-REF-QUAL
X(1) Interpreter

Identifies when qualification has been bypassed

as a result of a call to the function BYPASS-IDENTIFIER.
Y CQualification of the data item has been bypassed

N Data Item was not qualified

Byte 1 of BYPASSED-REF-TYPES.

BYPASSED-REF-TYPES
X(3) Interpreter

A concatenation of BYPASSED-REF-QUAL, BYPASSED-REF-SUB and

BYPASSED-REF-MOD. Identifies what has been bypassed by a call to the function

BYPASS-IDENTIFIER.

© Copyright IBM Corp. 1982, 2013

Predefined data items

Name

Description

BYPASSED-REF-SUB
X(1) Interpreter

Identifies when subscripting and indexing have been bypassed
as a result of a call to the function BYPASS-IDENTIFIER.

Y Subscripting or indexing of the data item has been bypassed
N Data Item was not subscripted or indexed.

Byte 2 of BYPASSED-REF-TYPES.

CALL-NAME
X(30) CALL file

Name of program to be called.

CHARACTER-STRING
X(1)

Reserved.

CICS-RECORD-NAME
X(30) CICS file

Name of record pointed by BLL-NAME.

COBOL-STANDARD
X(5) OPTION record

The level of the COBOL to be converted:
Note: L/Level refers to the Source Language Level that you specify on the
Language Level panel (see [Figure 8 on page 17).

ANS68 ANS 68:
DOS/VS COBOL LANGLVL(1), or
0OS/VS COBOL LANGLVL(1)
(L/Levels 1 and 3)

ANS74 ANS 74:
DOS/VS COBOL LANGLVL(2),
0OS/VS COBOL LANGLVL(2),
VS COBOL II Release 1.0, 1.1, 2.0, or any COBOL with the CMPR2 option
(L/Levels 2, 4, and 5)

ANSS85 ANS 85:
VS COBOL II NOCMPR?2 Release 3.0, 3.1, 3.2,
VS COBOL II NOCMPR?2 Release 4.0,
COBOL/370 NOCMPR?2,
COBOL for VSE/ESA NOCMPR2,
COBOL for MVS & VM NOCMPR?, or
COBOL for OS/390 & VM NOCMPR2
(L/Levels 6,7, 8, 9, 10, 11)
Enterprise COBOL for z/OS

176 ccca

Predefined data items

Name Description
Indicates the type of source COBOL to be converted:
COBOL-TYPE Note: L/Level refers to the Source Language Level that you specify on the

X(6) OPTION record

Language Level panel (see|Figure 8 on page 17).

DOS/VS
DOS/VS COBOL
(L/Levels 1 and 2)

0S/VS 0S/VS COBOL
(L/Levels 3 and 4)

COBII VS COBOL II (any release before 4.0)
(L/Levels 5 and 6)

COBII4
VS COBOL II (Release 4.0)
(L/Level 7)

COB370
COBOL/370 NOCMPR2
(L/Level 8)

COBVSE
COBOL for VSE/ESA NOCMPR2
(L/Level 9)

COBMVS
COBOL for MVS & VM NOCMPR2
(L/Level 10)

COB390
COBOL for 0OS/390 & VM NOCMPR2
(L/Level 11)

COBENT
Enterprise COBOL for z/OS (pre version 5)

CONSOLE-NAME
X(6)

Reserved.

COPY-LIBRARY
X(8)

Name of copy library.

COPY-LOCATION
X(3) COPY record

Indicates where the COPY member is used:

EN Environment Division
FS File Section

LI Linkage Section

WS Working-Storage Section
PR Procedure Division.

COPY-NAME
X(10) COPY record

Name of COPY member.

COPY-POINTER
9(7)

Location of the last COPY statement.

DA-LOCATION
9(7) Interpreter

Location of token DATA in token file (Data Division).

Appendix E. Predefined data items 177

Predefined data items

Name

Description

DATE-FORMAT
X(8) OPTION record

Format of the date as generated in VSE for DOS/VS COBOL. It can be
MM/DD/YY or DD/MM/YY.

DEVICE-FILE-NAME
X(10)

Set to “DISK” or blank for REWRITE LCP.

DEVICE-OVERRIDE-01
X(2)

Reserved.

DEVICE-OVERRIDE-02
X(2)

Reserved.

EN-LOCATION
9(7) Interpreter

Location of token ENVIRONMENT in token file (Environment Division).

END-OF-COPY
X(1) OPTION record

End-of-copy definition

P First period after the word COPY
L Source line end, containing the word COPY
N Do not process.

EXTERNAL-FILE-NAME
X(10) FILE record

Name of the external file name.

FIELD-SIZE
9(7)

Reserved.

FILE-CONVERSION
X(1) FILE record

Y or N conversion required.

FILE-SEQUENCE-NO
9(2) Interpreter

+1 for each file
then -1 if no file status added.

FILE-STATUS-NAME
X(30) KEY record

Name of FILE-STATUS in COBOL program.

FIRST-TOKEN-POINTER
9(7) Interpreter

Location of the first token of the program.

IBM-SYSTEM
X(2)

Reserved.

ID-LOCATION
9(7) Interpreter

Location of token IDENTIFICATION in token file. (Identification Division).

Reserved.
INPUT-FILE
X(10)
Reserved.
INPUT-LIBRARY
X(8)

178 ccca

Predefined data items

Name

Description

INPUT-TEXT
X(30) Interpreter

Data field used by the MOVE-LCP function from which characters are moved.

INTERNAL-FILE-NAME
X(30) FILE record

File name in the COBOL program.

I0-LOCATION
9(7) Interpreter

Location of token INPUT-OUTPUT in token file (Input-Output Section).

LAST-TOKEN-POINTER
9(7) Interpreter

Location of the last token of the source program.

LCP-ALPHA
X(10) Interpreter

Contains alphanumeric data for CONVERT-ALPHA-NUMERIC function.

LCP-NUMERIC
9(10) Interpreter

Contains numeric data after execution of CONVERT-ALPHA-NUMERIC function.

LENGTH-OF-MOVE
9(2) Interpreter

Number of characters to be moved from INPUT-TEXT to OUTPUT-TEXT by the
MOVE-LCP function.

LINAGE
X(1)

Linage clause found in File Section.

LI-LOCATION
9(7) Interpreter

Location of token LINKAGE in token file. (Linkage Section.)

LITERAL-SEPARATOR
X(1) OPTION record

Separation character for nonnumeric literals:
A Apostrophe
Q Quotation mark.

MEMBER-NAME
X(8) OPTION record

Source member name containing the program to be converted.

MESSAGE-ID
X(7) Interpreter

Identifier for conversion messages.

NOMINAL-KEY-NAME
X(30) KEY record

Name of field defining the NOMINAL KEY in the COBOL program.

NUMERIC-nn
9(10) Interpreter

Ten data elements used to save numeric values.
Note: Do not use these data items for your LCPs; they are used by the supplied
LCPs. For your LCPs, use USER-NUMERIC-nn.

OBJECT-COMPUTER-NAME

X(30)

Reserved.

OLD-ORGANIZATION-
-FILE-MODE
X(1) FILE record

File organization:
A: D: I:
R: S: u: W:

Appendix E. Predefined data items 179

Predefined data items

Name

Description

OLD-PROGRAM-NAME
X(30) PROGRAM record

COBOL program name before conversion if name changed.

OPTION-CICS
X(1) OPTION record

Indicator from panel for enabling CICS command conversion.

OPTION-nn
X(1) OPTION record

Fifteen indicators used to control optional conversion processing.

Values: Y, N.

File-organization:

ORGANIZATION-FILE- I Indexed S Sequential
MODE R Relative
X(1) FILE record
Reserved.
OUTPUT-FILE
X(10)
Reserved.
OUTPUT-LIBRARY
X(8)
Data field used by the MOVE-LCP function to store characters moved from the
OUTPUT-TEXT INPUT-TEXT field.

X(30) Interpreter

PROGRAM-NAME
X(10) PROGRAM record

Name of the converted COBOL program. This name will appear after
PROGRAM-ID in the converted program.

PROGRAM-STATUS
X(10) PROGRAM record

Save field for information about the conversion of the COBOL program. For
example: COMPLETE, ERROR, and WARNING.

PR-LOCATION
9(7) Interpreter

Location of token PROCEDURE in token file. (Procedure Division).

RECEIVING-CHARACTER
9(2) Interpreter

Position of the first character in the OUTPUT-TEXT field to be replaced by the
MOVE-LCP function.

RECORD-KEY-NAME
X(30) KEY record

Name of field defining the RECORD KEY in the COBOL program.

RECORD-NAME
X(30) RECORD record

Record name.

RELATIVE-KEY-NAME
X(30) KEY record

Name of field defining the RELATIVE KEY in the COBOL program.

180 ccca

Predefined data items

Name

Description

RETURN-CODE
X(2) Interpreter

Updated by the interpreter, giving the return code after each I/O operation on all
the logical files:

00 Successful operation
23 Record not found (after READ or READ-NEXT)
24 File full (after WRITE).

For other return code values, refer to the STATUS KEY values listed in the COBOL
Language Reference manual.

SELECT-LOCATION
9(7)

Location of SELECT clause.

SEQUENCE-STATUS-NO

9(2) FILE record

Sequence number of the definition of the file described in the converted COBOL
program.

SOURCE-COMPUTER-NAME

X(30)

Reserved.

SP-LOCATION
9(7) Interpreter

Location of token SPECIAL-NAMES in token file.

STARTING-CHARACTER

9(2) Interpreter

Number of first character to be moved from the INPUT-TEXT field by the
MOVE-LCP function.

STARTING-POSITION

9(2) CHANGE data set

Start position of TOKEN in the converted statement.

Position 1 is equal to column 8 in a COBOL statement.

STRING-DELIMITER
X(1) Interpreter

Character used by the STRING-LCP and UNSTRING-LCP functions to concatenate
character strings or to separate character strings.

STRING-LENGTH
9(2) Interpreter

Length of string in STRING-TEXT after execution of the STRING-LCP function.

STRING-TEXT
X(30) Interpreter

Field used by the STRING-LCP and UNSTRING-LCP functions.

STRING-WORD-nn
X(30) Interpreter

Ten fields used by the UNSTRING-LCP function to store a character string
extracted from STRING-TEXT and used by the STRING-LCP function to define
STRING-TEXT.

STRING-WORDS

The 01-level item for the STRING-WORDS-nn fields. Before using the
STRING-LCP function, initialize the STRING-WORDS-nn fields by moving
SPACES to STRING-WORDS.

SUBSCRIPT1-WORDS
X(30)

Reserved.

SUBSCRIPT2-WORDS
X(30)

Reserved.

SUBSCRIPT1-nn
X(30) Interpreter

Ten fields used to save subscripts or indexes defined in the COBOL program

Appendix E. Predefined data items 181

Predefined data items

Name

Description

SUBSCRIPT2-nn
X(30) Interpreter

Ten fields used to save subscripts or indexes defined in the COBOL program

TARGET-LANGUAGE
X(5) OPTION record

Indicates the target COBOL language that the program is being converted to.

COBII = VS COBOL II

CBVSE = COBOL for VSE/ESA

CBIBM = IBM COBOL (COBOL for MVS & VM,
COBOL for 0S/390 & VM)

CBENT = Enterprise COBOL for z/OS and OS/390

TEXT-nn
X(30) Interpreter

Ten fields used to save alphanumeric values.
Note: Do not use these data items for your LCPs; they are used by the supplied
LCPs. For your LCPs, use USER-TEXT-nn.

TOKEN-CHANGE-CODE
9(3) TOKEN data set

Indicates what LCP (if any) CCCA invokes when to convert the associated token:
999 CCCA does not invoke an LCP.
990 CCCA invokes an LCP that has the token in its CONVER statement.

nnn (other than 999 and 990) CCCA invokes an LCP that has LCP-nnn in its
CONVER statement.

The following list shows the change codes used by CCCA, and the
change codes you can use for your own LCPs:

000,
860-989,
992-998
Used by CCCA, or reserved for use

These LCPs are invoked by internal CCCA programs, not by reserved
words.

You cannot enter these values in the Change code field.

001-799
Available for your own LCPs.

800-859
Used by supplied LCPs.

991
Used by CCCA.

LCP991 is invoked both by reserved words and internal CCCA
programs.

TOKEN-FLAG-01
X(1) TOKEN data set

Word type defined in COBOL Reserved Word data set:
Section or paragraph name

Start of a clause

1

2

3 Start of a statement
5 Start of a phrase

9

Reserved for compiler, no meaning.

TOKEN-FLAG-02
X(1) TOKEN data set

Used in the same manner as TOKEN-FLAG-01, for example, where the token is
either a statement, a clause, or a section name.

182 ccca

Predefined data items

Name

Description

TOKEN-FLAG
X(2) TOKEN data set

Concatenates TOKEN-FLAG-01 and TOKEN-FLAG-02

Example:
TOKEN-FLAG-01 =1
TOKEN-FLAG-02 = 3
then
TOKEN-FLAG = 13.

TOKEN-LENGTH
9(3) TOKEN data set

Length of token.

TOKEN-LINE-CODE
X(1)

Reserved.

TOKEN-MESSAGE-ID
X(7)

Reserved.

TOKEN-POINTER
9(7) Interpreter

Position of token in token file.

TOKEN-POSITION
9(2) TOKEN data set

Location of the first character of the token in the source statement.
Note: Position 1 is equal to column 8 in the COBOL source statement.

TOKEN-SEQUENCE
X(6) TOKEN data set

Source statement number, containing token.

TOKEN-SOURCE
X(1) TOKEN data set

Source of token:
C Token contained in a COPY member

P Token contained in a program statement.

TOKEN-TEXT
X(30) TOKEN data set

Character string containing the token. With a literal of more than 30 characters, the
value of TOKEN-TEXT in the token file is blank.

TOKEN-TYPE-CODE
X(1) TOKEN data set

Token-type code:

C COPY statement (Element)

L Nonnumeric literal (Token)

N Numeric literal (Token)

P Data-description (PICTURE) (Token)
W Word (Token)

~

Command (Element)

*

Comment or element. (Element)

UDATE
X(08) Interpreter

The date of the conversion. The format is MM/DD/YY.

UPDATE-FILE-FLAG
X(1) FILE record

Flag used when the file is open in input/output mode.

USER-NUMERIC-nn
9(10) Interpreter

Ten fields available to user written LCPs for saving numeric values.

Appendix E. Predefined data items 183

Predefined data items

Name

Description

USER-TEXT-nn
X(30) Interpreter

Ten fields available to user written LCP for saving alphanumeric values.

UTIME
X(08) Interpreter

The time of the conversion. The format is HH:MM:SS.

VSAM-ORGANIZATION

X(1) FILE record

Y or N if VSAM.

WHERE-USED
X(3) Interpreter

Used to save the location of the token in the COBOL program:

EN Environment Division
FS File Section

ID Identification Division
I0 Input-Output Section
LI Linkage Section.

PR Procedure Division

RP Report Section
WS Working-Storage Section

WORD-SUFFIX
X(02) OPTION record

TWO numeric characters used to change reserved word used as data name.

WORD-SUFFIX-COUNT
9(4)

Reserved.

WORK-KEY-nn
X(30) WORK file

Name of field containing the access key for WORK-nn file.

WORK-NUMERIC-nn
9(7) WORK file

Name of field containing a numeric work value for WORK-nn file.

WORK-NUMERIC2-nn
9(7) WORK file

Name of field containing a numeric work value for WORK-nn file.

WORK-TEXT-nn
X(30) WORK file

Name of field containing a work value for WORK-nn file.

WORK-TEXT2-nn
X(30) WORK file

Name of field containing a work value for WORK-nn file.

WORK-TYPE-nn
X(3) WORK file

Name of field containing a work value for WORK-nn file.

WORK-TYPE2-nn
X(3) WORK file

Name of field containing a work value for WORK-nn file.

184 ccca

Predefined data items

Name Description
Position of the token WORKING-STORAGE in the token file.

WS-LOCATION
9(7) Interpreter

Appendix E. Predefined data items 185

Predefined data items

186 ccca

Appendix F. List of LCP functions

This appendix documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of CCCA.

The following list describes functions you can use in LCPs.

Note: If debu

ing for an LCP is activated (see “Deleting LCPs andl

ctivating /deactivating debugging for LCPs” on page 71)), the Op codes in the

following list appears in the LCP OPCODE column of the debug listing.

Name Op code Description

ADD-CALL AD-CL Write a CALL record to the logical CALL file.

ADD-COPY AD-CY Write a COPY record to the logical COPY file.

ADD-FILE AD-FL Write a FILE record to the logical FILE file.

ADD-KEY AD-KY Write or update a KEY record to the logical Key file.

ADD-PROGRAM AD-PR Write a PROGRAM record to the logical PROGRAM file.

ADD-RECORD AD-RC Write a RECORD record to the logical RECORD file.

ADD-WORK-nn AD-nn Write a WORK-nn record to the logical WORK-nn file.

BYPASS-IDENTIFIER BYID Bypass the identification of a data name (that is,
qualifier, subscript, index, and reference modifier)

BYPASS-POINTER BYPN Bypass conversion process associated with the token
currently in storage.

COMMENT M Put an * in column 7 in the source statement of the
token.

CONVERT-ALPHA-NUMERIC ALNUM Convert alphanumeric character string to numeric.

DETERMINE-LENGTH DTLN Calculate the length of data in ADD-TEXT. Result in
ADD-LENGTH.

DIAGNOSTIC DG Place message text contained in ADD-TEXT into the
message summary which appears at the end of the
conversion diagnostics listing.

EDIT-MESSAGE EDMSG Used to write informational and error messages to the
conversion listing.

EJECT EP Put a / in column 7 of the generated source statement.

GTERT Retrieve first token from the TOKEN data set.

GET-FIRST

GET-FIRST-TOKEN

GTLST Retrieve last token from the TOKEN data set.
GET-LAST
GET-LAST-TOKEN

GTNXT Retrieve next token from the TOKEN data set.
GET-NEXT
GET-NEXT-TOKEN

GTPRT Retrieve previous token form the TOKEN data set.
GET-PREVIOUS
GET-PREVIOUS-TOKEN

© Copyright IBM Corp. 1982, 2013

187

LCP functions

Name Op code Description
GET-TOKEN GTTKN Retrieve specified token or element from the TOKEN
data set.
GET-NEXT-ELEMENT GTNXE Retrieve next token or element from the TOKEN data
set.
GET-PREVIOUS-ELEMENT GTPRE Retrieve previous token or element from the TOKEN
data set.
GET-ELEMENT GTELM Retrieve specified token or element from the TOKEN
data set.
INSERT-AFTER INSERT-AFTER- INAF Insert a token or element after current token or element.
TOKEN
INSERT-BEFORE INBF Insert a token or element before current token or
INSERT-BEFORE-TOKEN element.
MAINTAIN-LINE-POSITION MNLNP If possible, maintain the physical position of the token or
element in the line of generated source.
MOVE-LCP MVLCP Move characters within predefined fields.
READ-CICS RD-CI Read a CICS record.
READ-FILE RD-FL Read a FILE record.
READ-KEY RD-KY Read a KEY record.
READ-WORK-nn RD-nn Read a WORK-nn record.
READ-NEXT-FILE RN-FL Read next FILE record.
READ-NEXT-RECORD RN-RC Read the next RECORD record for the current FILE
record.
READ-NEXT-WORK-nn RN-nn Read the next WORK-nn record.
RM Remove current token.
REMOVE
REMOVE-TOKEN
REMOVE-CLAUSE RMCL Remove token currently in storage and the tokens
following that are part of the same clause.
RMNXT Remove token following the token currently in storage.
REMOVE-NEXT
REMOVE-NEXT-TOKEN
REMOVE-SUFFIX RMSUF Remove the reserved word suffix added in pass 1.
REMOVE-STATEMENT RMST Remove token currently in storage and the tokens
following that are part of the same statement.
RP Replace the current token with the value held in
REPLACE ADD-TEXT.
REPLACE-TOKEN
RETRIEVE-FILE RT-FL Set and read a FILE record according to the RECORD
record currently in storage.
SETLL-FILE ST-FL Set FILE file to the first record.
SETLL-RECORD ST-RC Set logical RECORD file to first RECORD record for the
current FILE record.
SETLL-WORK-nn ST-nn Set logical WORK-nn file to the first WORK-nn record.
SPLIT-LINE SPLN Start a new line after the token currently in storage.
STRING-LCP STLC Concatenate fields into a single character string.

188 ccca

LCP functions

Name Op code Description
SF Insert after current token, leaving no blank between the
SUFFIX current token and the token being added.
SUFFIX-TOKEN
UNSTRING-LCP UNLC Separate a character string into parts delimited by a
specified delimiter.
UPDATE-FILE UP-FL Update logical FILE file for FILE record currently in
storage.
UPDATE-WORK-nn UP-nn Update logical WORK-nn record currently in storage.

Appendix F. List of LCP functions 189

LCP functions

190 ccca

Appendix G. LCP directory

This appendix lists the supplied Language Conversion Programs (LCPs), with a
brief description of the processing performed by each one.

LCPs fall into one of five categories:

1. LCPs that convert CICS commands

2. LCPs that convert COBOL statements

LCPs that partially convert COBOL statements
LCPs that flag COBOL statements

LCPs that set information for other LCPs

o bk w

For a more complete description of the conversion and flagging of the language
elements performed by the LCPs see |[Appendix A, “Converted COBOL language]|
flements,” on page 117/

Converted CICS commands

EXEC BLL references changed to ADDRESS OF

SERVICE RELOAD
Replaced by CONTINUE

ADD (851)
BLL references changed to POINTER facilities

COMPUTE
BLL references changed to POINTER facilities

MOVE
BLL references changed to POINTER facilities

SUBTRACT
BLL references changed to POINTER facilities.

Completely converted COBOL statements

ACTUAL
ACTUAL KEY clause; replaced by RELATIVE

ALPHABETIC
Changed to ALPHABETIC-UPPER

APPLY
Remove APPLY clause in I-O-CONTROL paragraph

ASSIGN
Change ASSIGN clause syntax

CBL Modify compiler options for COBOL /370
COPY Converts COBOL Standard 68 syntax and adds COPY information

CORR/CORRESP
Multiple MOVE changed to separate MOVEs

© Copyright IBM Corp. 1982, 2013 191

LCP directory

192 ccca

CURRENT-DATE
Replaced by DATE special register and reformatted or by EXEC CICS
ASKTIME in a CICS program

DATE Add hyphen if missing in DATE COMPILED and DATE WRITTEN

DATE-COMPILED
Add period after header if missing.

DISP In OPEN and CLOSE statements option deleted

ENTER
Obsolete element removed.

ENVIRONMENT
Add Configuration Section header if it is needed; relocate it if it is in the
wrong place.

EXAMINE
Change EXAMINE to INSPECT

EXHIBIT
EXHIBIT statement changed to DISPLAY

FD Convert FD entry, check LABEL clause

FILE-LIMIT
Delete FILE-LIMIT clause (COBOL 68 Standard)

FILE-LIMITS
Delete FILE-LIMITS clause (COBOL 68 Standard)

JUST Value literal is changed for COBOL 68 Standard syntax

JUSTIFIED
Value literal changed for COBOL 68 Standard syntax

LEAVE
In OPEN statement option deleted

LINE/LINES
Word removed in WRITE BEFORE/AFTER ADVANCING mnemonic

LVL88 Put 88 level value string in quotes, if missing

MEMORY
Remove MEMORY SIZE clause if Remove obsolete elements field on
Conversion Options panel 2 is set to Y

MOVE (851)
Add reference modification to variable length receivers that contain their
ODO object

MULTIPLE
For multiple reel/unit COBOL 68 Standard CLAUSE deleted

NATIVE
Add ALPHABET word in SPECIAL-NAMES

NOMINAL
Replaced by RELATIVE or clause deleted

NOTE Change to comment

OPEN Add FILE STATUS test for VSAM files that have had FILE STATUS clauses
added

LCP directory

OTHERWISE
Clause of IF statement replaced by ELSE

POSITIONING
AFTER POSITIONING clause of WRITE statement replaced by AFTER
ADVANCING clause

PROCEDURE
An Error Declaratives Section is added for each file that is to be converted
to VSAM.

PROCESSING
Delete PROCESSING MODE clause (COBOL 68 Standard)

READ MOVE NOMINAL TO RECORD KEY for ISAM files
Add reference modification to variable length receivers
that contain their own ODO object

REDEFINES
Remove clause in FD

RELEASE
Add reference modification to variable length receivers that contain their
own ODO object

REMARKS
Change to a comment

REREAD
In OPEN statement option deleted

RESERVE
Change RESERVE syntax COBOL 68 Standard

RETURN (851)
Add reference modification to variable length receivers that contain their
own ODO object

REWRITE
MOVE NOMINAL KEY TO RECORD KEY for ISAM files
Add reference modification to variable length receivers
that contain their own ODO object

SAME Change SAME AREA to SAME RECORD AREA
SD Conver SD ENTRY, LABEL clause

SEARCH
SEARCH WHEN KEY

SEEK Statement deleted

SEQUENCE
Add ALPHABET word in SPECIAL-NAMES

SPECIAL-NAMES
Add SPECIAL NAMES

STANDARD-1
Add ALPHABET word in SPECIAL-NAMES

START
MOVE NOMINAL TO RECORD KEY

THAN
Removed after > or < relational operators

Appendix G. LCP directory 193

LCP directory

THEN Delete THEN between statements

TIME-OF-DAY
Replaced by TIME special register or by an EXEC CICS ASKTIME (in a
CICS program) and reformatted.

TRACK-AREA
TRACK-AREA removed

TRANSFORM
Replaced by INSPECT statement

UNSTRING
Add reference modification to variable length receivers that contain their
own ODO object.

UPSI-0 (850)
Replace UPSI switch by condition name

UPSI-1 (850)
Replace UPSI switch by condition name

UPSI-2 (850)
Replace UPSI switch by condition name

UPSI-3 (850)
Replace UPSI switch by condition name

UPSI-4 (850)
Replace UPSI switch by condition name

UPSI-5 (850)
Replace UPSI switch by condition name

UPSI-6 (850)
Replace UPSI switch by condition name

UPSI-7 (850)
Replace UPSI switch by condition name

USING
START...USING KEY USING word deleted

VALUE
Remove sign if PICTURE unsigned

VALUES
Changed to VALUE if not used in level 88

WHEN-COMPILED
WHEN-COMPILED special register output reformatted (OS/VS COBOL
only)

WRITE
MOVE NOMINAL KEY TO RECORD KEY for ISAM files;
add reference modification to variable length receivers
that contain their own ODO.

COBOL statements converted with warning

NOT Change abbreviated relation condition COBOL 68 Standard syntax

ON ON integer changed to IF
ON integer UNTIL integer changed to IF
other cases flagged

194 ccca

LCP directory

COBOL statements flagged

The flagged COBOL statements may be put in several categories:

1. Language elements from functions of the source language that are no longer
supported in the target languages and have no replacement or equivalent in the
target languages. Therefore, a conversion cannot be performed.

a. Communication Facility (OS/VS COBOL only)

COMMUNICATION
Communication Section header flagged

COUNT
ACCEPT MESSAGE COUNT statement flagged

DISABLE
DISABLE statement flagged

ENABLE
ENABLE statement flagged

RECEIVE
Receive statement flagged

SEND Send statement flagged

b. Report Writer section (flagged if Flag Report Writer statements field on
Conversion Options panel 2 is set to Y)

GENERATE
Generate statement flagged

INITIATE
Initiate statement flagged

LINE-COUNTER (855)
Flagged

PAGE-COUNTER (855)
Flagged

PRINT-SWITCH (855)
Flagged

REPORT
Flagged

REPORTS
Flagged

TERMINATE
Statement flagged

USE Flagged USE BEFORE REPORTING
2. Other cases

ALL Flag MOVE ALL (if COBOL 68 Standard syntax)

ALTER
SEGMENTATION - flag

CALL Flagged if the identifier has a PICTURE string that consists of A's and
B's only; CALL...USING procedure name/VSAM file name statements
are flagged;

Appendix G. LCP directory 195

LCP directory

196 ccca

CANCEL
Flagged if there is an identifier in the statement with a PICTURE string
that consists of A's and B's only; procedure name/VSAM file name
statements are flagged

CURRENCY
Flag COBOL 68 Standard CURRENCY SIGN clause

DEBUGGING
USE FOR DEBUGGING flag if not procedure name

DIVIDE
Flag ON SIZE ERROR when multiple receivers

IN Flag qualified indexes

INITIALIZE
Flag INITIALIZE..REPLACING ALPHABETIC/ALPHANUMERIC-
EDITED if there are receiving fields with PICTURE strings that consist
of A's and B's only.

INSPECT
Flagged if the PROGRAM COLLATING SEQUENCE established in the
OBJECT COMPUTER paragraph identifies an alphabet defined with the
ALSO clause

LABEL RECORD
Data name changed to STANDARD

MULTIPLY
Flag ON SIZE ERROR when there are multiple receivers

NSTD-REELS
Flag references to NSTD-REELS special register

OCCURS
Flags if phrases of OCCURS clause are in non-standard order

OF Flag qualified indexes
PIC Check scaled variables

PICTURE
Check scaled variables

REPLACE
Flagged if COBOL 85 Standard source

RELATIVE
Check if PICTURE of relative key has scaling position

STRING
Statement flagged if the receiver has a PICTURE string that consists of
A's and B's only;

TOTALING/ TOTALED AREA
In LABEL clause deleted

TRACE
READY/RESET TRACE statement deleted

TRACK-LIMIT
TRACK-LIMIT removed

TRUE SET..TO TRUE statement flagged if COBOL Standard 85 standard
behavior is different.

LCP directory

UNSTRING
UNSTRING DELIMITED BY ALL flag (if COBOL 68 Standard)

USE GIVING phrase removed in USE AFTER STANDARD

LCPs corresponding to information

ACCESS
Update FILE information in CONTROL file

ASCENDING
Save key ID for SEARCH ... WHEN

DECLARATIVES
Check section end

DEPENDING
Save name of object of ODO

DESCENDING
Save key ID for SEARCH ... WHEN

END-OF-CONVERSION-1
Add WRITE ... AFTER ADVANCING section

END-OF-CONVERSION-2
Add data items in WS

END-OF-CONVERSION-3
Add data items in WS

END-OF-CONVERSION-4
Add SPECIAL NAMES

END-OF-CONVERSION-5
List data names to be checked

ENVIRONMENT
Set flag when entering Environment Division

ID Set flag when entering ID Division

IDENTIFICATION
Set flag when entering ID Division

INDEXED
Store Indexes on Work file; used by the IN and the OF LCP

INPUT-OUTPUT
Set flag when entering I1/O Section

LINKAGE
Set flag when entering Linkage Section

PROGRAM-ID
Update PROGRAM FILE

RECORD
Update key record

SECTION
Set flag when entering a section

SELECT
Update CONTROL file

Appendix G. LCP directory 197

LCP directory
WORKING-STORAGE

Set flag entering WS SECTION
01 Save RECORD name of FD

198 ccca

Appendix H. Sample output

This appendix contains sample output generated by CCCA.

Program/File report

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN 17 APR 1998 18:45:39 Page
.......... PROGRAM -- FILE REPORTou....
C
---COBOL-- DL I ----- OPTIONS----- =mmmmmmee FILES DEFINED --------mmmmmmmmme
PGM.NAME REV PBR SUFF EV C 1 11111 MEMBER STATUS OLD NEW CNV SYSTEM COBOL
CNV WORD L L S 12345 67890 12345 NAME DATE/TIME ORG ORG REQ NAME NAME

ABJIVPO1 03 213 © Q1 N YYYYY YNNNN NNNNN ABJIVPO1 COMPLETE
98/04/16 18:26
COMPILE RC=00
98/04/16 18:26
MANUAL COMPLETION
/o :
S S N DDPRINT PRINT-FILE
ABJIVPO2 04 208 2 Q1 N YYYYY YNNNN NNNNN ABJIVPO2 COMPLETE
98/04/16 18:12
COMPILE RC=04
98/04/16 18:12
MANUAL COMPLETION

S S N PRINT PRINT-OUT
ABJIVPO3 02 875 © Q1 Y YYYYY NNNNN NNNNN ABJIVPO3 COMPLETE
98/04/16 18:04
MANUAL COMPLETION
i :
DIRECT1 02 42 0 A2 N YYYYY NNNNN NNNNN DIRECT1 WARNING
98/04/16 18:32
MANUAL COMPLETION

R R Y MASTER1 DA-FIL1
S S N MASTERZ2 DA-FIL2
D R Y MASTER3 DA-FIL3
W R Y MASTER4 DA-FIL4
A R Y MASTER5 DA-FIL5
U R Y MASTER6 DA-FIL6
I I Y MASTER7 DA-FIL7
U R Y TATIL Bl
R R Y TAT2 B2
S S N TAT3 B3
D R Y TAT4 B4
W R Y TAT5 B5
A R Y TAT6 B6

.......... END 0F REPORT e

© Copyright IBM Corp. 1982, 2013

199

File/Program report

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN 17 APR 1998 18:46:21 Page 1
.......... FILE -- PROGRAM REPORT
SYSTEM PROGRAM ORG CONVERSION COBOL
NAME NAME REQUIRED NAME
ANSWERS LCPTSTO3 NO PRINT-OUT
APRINTER LCPIO101 NO PRINT-FILE

LCPI0105 S NO OUTPUT-DEVICE
LCPTSTO5 S NO PRINT-FILE
LCPTST10 S NO PRINT-FILE
LCPTSTI11 NO OUTPUT-LINE
LCPTST12 S NO PRINT-LINE
LCPTST13 S NO PRINT-LINE
LCPTST14 S NO PRINT-FILE
LCPTST15 S NO A-LINE
LCPTST16 S NO A-LINE
CPNNOOO1 CPGMOOO1 S NO CADO10T1
CPNN00O2 CPGM0002 S NO CSD-ONLINE-RECORD-SORT-FILE
CPNNOOO3 CPGMOOO3 S NO CSD-DATABASE-CONTROL-FILE
CPNNOOO4 CPGMOO04 S NO CSD-ONLINE-MASTER-FILE
DDPRINT ABJIVPO1 S NO PRINT-FILE
DUM BLGSAO1 S NO SORTFILE
EIPARM EIO30BPF I YES EIPARM
IBDAM LCPI0105 R YES BDAM-IN
LCPI0107 R YES BDAM-IN
INFILE INDEX S NO CARD-FILE
INFPRINT INFFO101 S NO REPORT-FILE
TOBDAM LCPI0105 R YES BDAM-I0
LCPI0107 R YES BDAM-IO
ISAMO1A LCPIO101 I YES QISM-0UT
LCPIO101 I YES QISM-IN
ISAMO7A LCPI0106 I YES QUISAM
ISAMO8A LCPI0106 I YES QUISAMX
ISAMO9A LCPI0106 I YES BYSAM
MASTER INDEX I YES IS-FILE
LCPTSTO4 I YES IS-FILE
LCPTSTO7 I YES IS-FILE
MASTER1 DIRECT1 R YES DA-FIL1
MASTER2 DIRECT1 S NO DA-FIL2
MASTER3 DIRECT1 R YES DA-FIL3
PRINT ABJIVPO2 S NO PRINT-OUT
.......... END 0F REPORT e
Copy/Program report

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN 17 APR 1998 18:47:38 Page 1
.......... COPY -- PROGRAM REPORT
copPy PROGRAM LOCATION ASSOCIATED
NAME NAME NAME
ABJCIOUT ABJIVPO3 LINKAGE SECTION MAP13I
ABJCQIN ABJIVPO3 WORKING-STORAGE MAP1I
ABJCQOUT ABJIVPO3 LINKAGE SECTION MAP11I
ABJERRMP ABJIVPO3 LINKAGE SECTION MAP12I
ABJL901 ABJIVPOZ FILE SECTION OUTPUT-RECORD
ABJL902 ABJIVPO2 FILE SECTION
ABJL903 ABJIVPO2 WORKING-STORAGE NUM-OF-ITEMS
ABJL903A ABJIVPOZ WORKING-STORAGE
ABJL904 ABJIVPO2 WORKING-STORAGE
DFHAID ABJIVPO3 WORKING-STORAGE DFHAID
DFHBLLDS ABJIVPO3 LINKAGE SECTION DFHBLLDS
DFHBMSCA ABJIVPO3 WORKING-STORAGE DFHBMSCA
DFHCSADS ABJIVPO3 LINKAGE SECTION DFHCSADS
DFHTCADS ABJIVPO3 LINKAGE SECTION DFHTCADS
.......... END 0F REPORT e

200 ccca

Call/Program

5648-B05 V2R1 -

.......... CALL
PROGRAM N OF
NAME CALLS
ABJIVPO3 00006
AMPM2AA 00010
BLGA201 00005
BLGF200 00001

report

IBM COBOL CONVERSION AID - SAMPLE RUN
-- PROGRAM REPORT

CALL

NAME

"CBLTDLI"
'CBLTDLI"'
'CBLBTS'
'BLGT20A'
END

0F REPORT

17 APR 199

8 18:48:49

Page

1

LCP directory

5648-B05 V2R1

RESERVED WORD

ACCEPT

ACCESS

ACTUAL

ADD

ALL

ALPHABETIC

ALTER

APPLY

ASCENDING

ASSIGN

ASSIGN/DOS

BLANK

BLOCK

CALL

CANCEL

CBL

CLOSE

COM-REG
COMMUNICATION
COMPUTE
CONFIGURATION

Copy

CORR

CORRESPONDING

COUNT

CURRENCY
CURRENT-DATE

DATE

DATE-COMPILED

DEBUG

DEBUGGING
DECLARATIVES

DELETE

DELIMITED

DEPENDING
DESCENDING

DISABLE

DISP

DISPLAY

DIVIDE

DIVISION

ENABLE
END-OF-CONVERSION-1
END-OF-CONVERSION-2
END-OF-CONVERSION-2/D0S
END-OF-CONVERSION-3
END-OF-CONVERSION-3/D0S
END-OF-CONVERSION-4
END-OF-CONVERSION-5

- IBM COBOL CONVERSION AID -
LCP DIRECTORY
PROCESSING DESCRIPTION

flag ACCEPT used in CICS programs

Update Control file with FILE information

ACTUAL KEY...
ADD WITH BLL'S
MOVE ALL ...

replaced by RELATIVE KEY...

ALPHABETIC changed to ALPHABETIC-UPPER

SEGMENTATION - FLAG

Remove APPLY clause from I-0-CONTROL para

Save KEY data-name for SEARCH...WHEN

Change ASSIGN clause syntax
Change ASSIGN clause syntax

Save 88's with VALUE zero for SET...TO TRUE
If VSAM file, remove BLOCK CONTAINS clause

CALL statement update and flagging

Flag identifiers with A and B only PICTURE

Update compiler options
Remove WITH POSITIONING phrase

Flag reference to COM-REG special register

COMMUNICATION SECTION FLAG

CICS - CHANGE BLL TO ADDRESS OF
CHECK IF ENVIRONMENT DIVISION

COPY statement update and flagging
REPLACED BY SEPARATE MOVES
REPLACED BY SEPARATE MOVES
COMMUNICATION SECTION - FLAG

FLAG ANS 68 CURRENCY SIGN CLAUSE
CHANGE DATE FORMAT

ADD - TO DATE COMPILED AND DATE WRITTEN

COMMENT OUT DATE-COMPILED PARAGRAPH

CHANGE TO COMMENT THE PACKET

USE FOR DEBUGGING FLAG IF - PROCNAME

CHECK SECTION END (ALTER-PERFORM)
flag DELETE used in CICS programs
CHECK IF STRING INTO SAME AREA
STORE 0DO ON WORK FILE

SAVE KEY ID FOR SEARCH ... WHEN
COMMUNICATION SECTION FLAG
OPEN/CLOSE. .DISP ..TAPE

flag DISPLAY used in CICS programs

FLAG SIZE ERROR WHEN MULTIPLE RECEIVERS

ENSURE PERIOD FOLLOWS DIVISION HDR
COMMUNICATION SECTION FLAG

CHECK 00 ADD WRITE

ADD DATA ITEMS IN WS

ADD DATA ITEMS IN WS

ADD DATA ITEMS IN WS

ADD DATA ITEMS IN WS

ADD SPECIAL NAMES

LIST DATA NAMES

17 APR 1998 17:16:33

DATE

20/APR/1998
21/APR/1998
21/APR/1998
20/APR/1998
20/APR/1998
21/APR/1998
20/APR/1998
21/APR/1998
21/APR/1998
21/APR/1998
21/APR/1998
21/APR/1998
21/APR/1998
21/APR/1998
21/APR/1998
21/APR/1998
21/APR/1998
21/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
21/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998

TIME

CORE DBG

SIZE OPT

07:56:10
16:38:59
16:39:15
07:56:44
07:57:17
16:39:29
07:57:27
16:41:51
16:51:15
16:42:20
16:42:44
16:43:06
16:43:21
16:43:30
16:43:48
16:44:03
16:44:16
16:44:28
08:00:06
08:00:16
08:00:44
16:44:38
08:01:28
08:01:46
08:02:05
08:02:41
08:02:26
08:03:02
08:02:52
08:03:13
08:03:24
08:03:35
08:03:45
08:03:54
08:04:06
08:04:24
08:04:34
08:04:44
08:04:55
08:05:04
08:05:16
08:05:26
08:05:36
08:06:40
08:05:57
08:07:01
08:07:23
08:07:38
08:07:59

Appendix H. Sample output

525
670
8480
815
295
530
1065
690
9405
8680
3940
245
5870
3270
2595
1380
205
655
4965
785
3240
5520
5520
345
560
3400
1555
300
755
1230
460
185
1565
4690
690
645
845
185
1820
980
645
8805
8960
8820
8765
4115
7920
3305

Page

1

201

5648-B05 V2R1

RESERVED WORD

ENTER
ENVIRONMENT
EXAMINE
EXEC
EXHIBIT

FD
FILE-LIMIT
FILE-LIMITS
GENERATE

1D
IDENTIFICATION
IN

INDEXED
INITIALIZE
INITIATE
INPUT-OUTPUT
INSPECT
JUST
JUSTIFIED
LABEL

LEAVE

LINE

LINES
LINKAGE
MEMORY
MERGE
MULTIPLE
MULTIPLY
NATIVE
NOMINAL

NOT

NOTE
NSTD-REELS
OBJECT-COMPUTER
OCCURS

OF

ON

OPEN
OTHERWISE
PERFORM

PIC

PICTURE
POSITIONING
PROCEDURE
PROCESS
PROCESSING
PROGRAM-ID
READ
RECEIVE

202 ccca

- IBM COBOL CONVERSION AID -
LCP DIRECTORY
PROCESSING DESCRIPTION

REMOVE ENTER STATEMENT

CHECK IF CONFIGURATION-SECTION

REPLACE EXAMINE WITH INSPECT

REPLACE POINTER OPTION BY ADDRESS OF ...
CHANGE EXHIBIT TO DISPLAY

CONVER FD ENTRY,CHECK LABEL CLAUSE
DELETE FILE-LIMIT ANS 68 CLAUSE

DELETE FILE-LIMITS ANS 68 CLAUSE
STATEMENT FLAGGED RPWT

SET FLAG WHEN ENTERING ID DIVISION

SET FLAG WHEN ENTERING ID DIVISION
ISSUE MESSAGE FOR QUALIFIED INDEXES
STORE INDEX NAME ON WORK FILE

FLAG REPLACING ALPHABETIC/ALPHANUMERIC
STATEMENT FLAGGED RPWT

SET FLAG WHEN ENTERING I-O SECTION

FLAG IF COLLATING SEQUENCE HAS AN ALSO
ANSI 68 - RIGHT JUSTIFY PICTURE VALUE
ANSI 68 - RIGHT JUSTIFY PICTURE VALUE
CHECK LABEL CLAUSE

OPEN...LEAVE TAPE

REMOVE LINE AFTER MNEMONIC NAME

REMOVE LINE AFTER MNEMONIC NAME

SET FLAG WHEN ENTERING IN LINKAGE SECTION
REMOVE MEMORY SIZE CLAUSE

flag MERGE used in CICS programs

DELETE MULTIPLE FILE TAPE CLAUSE

FLAG SIZE ERROR WHEN MULTIPLE RECEIVERS
ADD ALPHABET WORD IN SPECIAL-NAMES
DELETE NOMINAL KEY CLAUSE

FLAG ANSI 68 ABBREV. RELATION CONDITIONS
COMMENT OUT NOTE STATEMENT

FLAG NSTD-REELS SPECIAL REGISTER

MOVE INTO AREA A.

Correct order of phrases in OCCURS clause
ISSUE MESSAGE FOR QUALIFIED INDEXES
FLAG ON DEBUGGING

REVERSED OPTION - MULTIREEL FILE
REPLACE OTHERWISE BY ELSE

FLAG PERFORM...VARYING...AFTER

FLAG SCALED VARIABLES

FLAG SCALED VARIABLES

CHANGE POSITIONING TO ADVANCING
GENERATE ERROR DECLARATIVES

MODIFY COMPILER OPTIONS FOR COBOL 370
DELETE 68 STANDARD CLAUSE

UPDATE PROGRAM FILE

MOVE NOMINAL TO RECORD KEY
COMMUNICATION SECTION FLAG

17 APR 1998 17:16:33

DATE

20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
21/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998

TIME

CORE DBG
SIZE OPT
14 605
24 1570
36 3765
52 2990
06 7895
128 7750
:51 535
06 535
17 365
27 160
37 160
46 2940
00 2550
14 3930
30 365
50 165
40 540
59 6225
18 6225
38 3690
57 620
09 605
19 605
29 425
48 310
58 185
:07 770
118 1800
29 615
40 840
50 5620
08 650
18 205
28 320
21 1885
152 2940
:06 4545
23 915
34 290
44 815
54 7195
15 7195
35 9580
01 4870
17 2595
131 255
40 2495
55 525
22 640

Page

2

5648-B05 V2R1

RESERVED WORD

- IBM COBOL CONVERSION AID -
LCP DIRECTORY
PROCESSING DESCRIPTION

1

DATE

7 APR 1998 17:16:33 Page 3

TIME CORE DBG

RECORD
REDEFINES
RELATIVE
RELEASE
REMARKS
REPLACE
REPORT
REPORTS
REREAD
RERUN
RERUN/DOS
RESERVE
REWRITE
SAME

SD

SEARCH
SECTION
SEEK
SELECT
SEND
SEQUENCE
SERVICE
SORT-OPTION
SOURCE-COMPUTER
SPECIAL-NAMES
STANDARD-1
START

STOP
STRING
SUBTRACT
TERMINATE

TIME-OF-DAY
TRACE
TRACK-AREA
TRACK-LIMIT
TRANSFORM
TRUE

UNSTRING

USE

USING

VALUE

VALUES
WHEN-COMPILED
WORKING-STORAGE
WRITE

ZEROES

ZEROS

UPDATE KEY RECORD OF WORK FILE
REMOVE CLAUSE IN FD

KEEP RELATIVE KEY

ADD LENGTH FOR VARIABLE LENGTH RECEIVER

COMMENT OUT REMARKS PARAGRAPH

ANSI 85 FLAG OTHERWISE ADD SUFFIX

STATEMENT FLAGGED RPWT

STATEMENT FLAGGED RPWT

OPEN...REREAD TAPE

CHANGE RERUN CLAUSE SYNTAX

CHANGE ASSIGN NAME SYNTAX

CHANGE RESERVE SYNTAX ANS 68 TO ANS 74

MOVE NOMINAL KEY TO RECORD KEY

CHANGE SAME AREA TO SAME RECORD AREA

CONVER SD ENTRY , LABEL CLAUSE

SEARCH WHEN KEY

SET FLAG WHEN ENTERING A SECTION

DELETE STANDARD 68 CLAUSE

UPDATE CONTROL FILE

COMMUNICATION SECTION FLAG

ADD ALPHABET WORD IN SPECIAL-NAMES
REPLACE SERVICE RELOAD BY CONTINUE
REMOVE SORT-OPTION SPECIAL REGISTER

MOVE INTO AREA A

ADD SPECIAL NAMES

ADD ALPHABET WORD IN SPECIAL-NAMES

MOVE NOMINAL TO RECORD KEY

flag STOP used in CICS programs

FLAG ALPHANUMERIC-EDITED RECEIVERS
BLL SUBTRACT .

CHANGE TO A COMMENT RPWT

REMOVE THAN IF > THAN OR < THAN

DELETE THEN BETWEEN STATEMENTS

CHANGE TIME-OF-DAY FORMAT

REMOVE TRACE STATEMENT

TRACK-AREA REMOVED

TRACK-LIMIT REMOVED

REPLACE TRANSFORM BY INSPECT

SET...TO TRUE - REL. CONDITIONS FLAGGED

UNSTRING DELIMITED BY ALL FLAG
REMOVE USE FOR DEBUGGING/REPORTING SECTION

START ...USING KEY

REMOVE SIGN IF PICTURE UNSIGNED

CHANGED TO VALUE

CHANGE WHEN-COMPILED FORMAT

SET FLAG ENTERING WS SECTION

MOVE NOMINAL KEY TO RECORD KEY
REPLACE ZEROES WITH ZERO IN IF
REPLACE ZEROS WITH ZERO IN IF

20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998

SIZE OPT
08:26:32 240
08:26:42 425
08:26:52 480
08:27:02 4350
08:27:19 340
08:27:29 620
08:27:39 730
08:27:50 635
08:28:00 605

08:33:28 3410
08:33:43 8615
08:34:07 365
08:34:17 340
08:34:26 965
08:34:49 2810
08:35:22 1295
08:35:03 250
08:35:13 210

Appendix H. Sample output

203

5648-B05 V2R1

RESERVED WORD

893
894
895
896
991
997

204 ccca

END

- IBM COBOL CONVERSION AID -
LCP DIRECTORY
PROCESSING DESCRIPTION

MODULE STANDARD : LEVEL 01
MODULE STANDARD : LEVEL 1
MODULE STANDARD : LEVEL 77
Add suffix to user-defined words
CHECK END-OF-PAGE AGAINST LINAGE
MODIFY UPSI SWITCH
add LENGTH for variable Tength receiver
ADD SUFFIX TO DOS & 0S user-defined word
ADD ALPHABET WORD IN SPECIAL-NAMES
SAVE MNEMONIC NAMES FOR ADVANCING .. LINE
STATEMENT FLAGGED RPWT
COMMENT OUT COMMENT PARAGRAPH
ADD SUFFIX FOR RESERVED WORD (DOS)
ADD SUFFIX to ANSI68/74 user-defined word
ADD SUFFIX TO DOS, OS & VS COBOL II WORD
CHECK PERIODS BEFORE/BEHIND LABELS.
ADD SUFFIX TO PROGRAM NAME
ADD QUOTE/APOST MSG ON CONTINUED LITRL
REMOVE BACK-TO-BACK PARENTHESES
CHECK LITERAL HAS SPACES FOR AND AFT
REMOVE CONSECUTIVE PERIODS
FLAG FILE-STATUS
Add DATE FORMAT clause
PUT VALUE BETWEEN QUOTE IF NEEDED
REMOVE BLL CELLS IN LINKAGE SECTION
CHANGE BLL CELLS TO ADDRESS OF ...
REMOVE STATEMENT WITH SECONDARY BLL
FLAG STATEMENT WITH REDEFINED BLL
FLAG STATEMENT WHICH REFERENCES 1ST BLL
FLAG 01 LEVEL RECORDS WITHOUT BLL CELLS
FLAG BLL CELLS THAT DO NOT HAVE 01 RECORDS
REMOVE BRACKETS AROUND OPERATORS
REMOVE TO AFTER =

0F DIRECTORY ...coveee.

17 APR 1998 17:16:33

DATE

20/APR/1998
20/APR/1998
20/APR/1998
21/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998
20/APR/1998

TIME

08:

08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:
08:

CORE DBG
SIZE OPT
39 5885
57 5965
15 3645
11 710
03 585
17 6655
41 6815
02 470
12 925
23 280
33 290
43 300
53 610
03 465
13 595
23 1760
35 970
46 625
56 610
07 1435
19 110
28 1000
39 9900
29 5855
05 2390
18 6855
40 1300
51 465
02 455
12 190
21 190
30 2335
43 3435

Page

4

Compilation of an LCP

5648-B05 V2Rl - IBM COBOL CONVERSION AID - SAMPLE RUN 17 APR 1998 03:06:46 PAGE 1
STMT SEQNBR A 1 B.. ... 2 o0 .. LCP SOURCE STATEMENTS ... 6 7 .IDENTFCN
/ 00001000
* *00002000
1 * CONVERA OBJECT-COMPUTER '"MOVE INTO AREA A.' *00003001
* *00004000
00005000
* Licensed Materials - Property of IBM *00006000
* *00007000
* 5785-CCC 5785-ABJ 5648-B05 5686-A07 *00008000
* *00009000
* (c) Copyright IBM Corp. 1982, 1998. A1l Rights Reserved. *00009100
* *00009200
* US Government Users Restricted Rights - Use, *00009300
* duplication or disclosure restricted by GSA ADP *00009400
* Schedule Contract with IBM Corp. *00009500
* *00009600
00010200
00011000
2 OBJECT-010. 00012000
3 IF COBOL-TYPE NOT = 'DOS/VS' 00013000
4 AND COBOL-TYPE NOT = '0S/VS' 00014000
5 GO TO END-CHANGE. 00015000
6 IF WHERE-USED IS NOT EQUAL TO 'EN' 00016000
7 GO TO END-CHANGE. 00017000
8 IF TOKEN-POSITION NOT < 5 00017100
9 MOVE 01 TO STARTING-POSITION 00017300
10 MOVE TOKEN-TEXT TO ADD-TEXT 00017400
11 PERFORM DETERMINE-LENGTH 00017500
12 PERFORM REPLACE. 00017600
13 GO TO END-CHANGE . 00029000
TEXT DESCRIPTION - MOVE INTO AREA A.
LCP PROGRAM NAME - OBJECT-COMPUTER
TABLE DRIVEN CORE SIZE - 320

Appendix H. Sample output 205

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN 17 APR 1998 03:06:46 PAGE 1

STMT SEQNBR A 1 B.. ... 2 oo e LCP SOURCE STATEMENTS ... 6 7 .IDENTFCN
/ 00001000
* *00002000

1 * CONVER EXAMINE '"REPLACE EXAMINE WITH INSPECT' *00003000
* *00005000
* REPLACE THE EXAMINE STATEMENT WITH THE INSPECT STATEMENT *00005300
* *00005600
* mmmmmmmmmoo SYNTAX DESCRIPTION ------------oommmmmom *00006000
* *00007000
* FORMAT 1 COBOL ANS 68 : *00008000
* e *00009000
* -- <EXAMINE> <IDENTIFIER-1> *00010000
* -- <TALLYING> *00011000
* -- <UNTIL FIRST> <LITERAL-1> *00012000
* -- <ALL> <LITERAL-1> *00013000
* -- <LEADING> <LITERAL-1> *00014000
* -- *00015000
* ++ <REPLACING> <BY> <LITERAL-2> *00016000
* *00017000
* FORMAT 1 COBOL ANS 74 : *00018000
R el *00019000
* -- <MOVE> <ZERQS> <T0> <TALLY> *00020000
* -- <INSPECT> <IDENTIFIER-1> *00021000
* -- <TALLYING> <TALLY> <FOR> *00022000
* -- <CHARACTERS > <BEFORE> <ALPHA-LITERAL-1> *00023000
* -- <ALL> <ALPHA-LITERAL-1> *00024000
* -- <LEADING> <ALPHA-LITERAL-1> *00025000
* ++ <REPLACING> *00026000
* ++ <CHARACTERS > <BY> *00027000
* ++ <ALPHA-LITERAL-2> *00028000
* ++ <BEFORE> <ALPHA-LITERAL-1> *00029000
* ++ <ALL> <ALPHA-LITERAL-1> *00030000
* ++ <BY> <ALPHA-LITERAL-2> *00031000
* ++ <LEADING> <ALPHA-LITERAL-1> *00032000
* ++ <BY> <ALPHA-LITERAL-2> *00033000
* *00034000
* *00035000
* FORMAT 2 COBOL ANS 68 : *00036000
R *00037000
* -- <EXAMINE> <IDENTIFIER-1> *00038000
* -- <REPLACING> *00039000
* -- <UNTIL FIRST> <LITERAL-3> <BY> <LITERAL-4> *00040000
* -- <ALL> <LITERAL-3> <BY> <LITERAL-4> *00041000
* -- <LEADING> <LITERAL-3> <BY> <LITERAL-4> *00042000
* -- <FIRST> <LITERAL-3> <BY> <LITERAL-4> *00043000
* *00044000
* FORMAT 2 COBOL ANS 74 : *00045000
* mmmmmmmmmmmmeemeeeeeeeo *00046000
* -- <INSPECT> <IDENTIFIER-1> *00047000
* -- <REPLACING> *00048000
* -- <CHARACTERS > <BY> *00049000
* -- <ALPHA-LITERAL-4> *00050000
* -- <BEFORE> <ALPHA-LITERAL-3> *00051000
* -- <ALL> <ALPHA-LITERAL-3> *00052000
* -- <BY> <ALPHA-LITERAL-4> *00053000
* -- <LEADING> <ALPHA-LITERAL-3> *00054000
* -- <BY> <ALPHA-LITERAL-4> *00055000
* -- <FIRST> ALPHA-LITERAL-3 *00056000

206 ccca

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN
STMT SEQNBR A 1 B.. ... 2 oo .. LCP SOURCE STATEMENTS ... 6 7 .IDENTFCN

* -- <BY> <ALPHA-LITERAL-4> *00057000

* *00058000
00059000

* Licensed Materials - Property of IBM *00060000

* *00061000

* 5785-CCC 5785-ABJ 5648-B05 5686-A07 *00062000

* *00063000

* (c) Copyright IBM Corp. 1982, 1998. A1l Rights Reserved. *00064000

* *00064100

* US Government Users Restricted Rights - Use, *00064200

* duplication or disclosure restricted by GSA ADP *00064300

* Schedule Contract with IBM Corp. *00064400

* *00064500
00064600

00065000

2 * 05 POSITION-SAVE PIC 9(2) . 00066000
3 * 05 HOLD-TOKEN PIC X(30) . 00067000
4 * 05 HOLD-LENGTH PIC 9(3) . 00068000
5 * 05 HOLD-LITERAL PIC X(30) . 00069000
6 * 05 LITERAL-LENGTH PIC 9(3) 00070000
7 * 05 TOKEN-POINTER-SAVE PIC 9(7) 00071000
8 * 05 UNTIL-FLAG PIC X(1) . 00072000
00073000

9 SKIP-WS . 00074000
00075000

10 IF COBOL-TYPE NOT = 'DOS/VS' 00076000
11 AND COBOL-TYPE NOT = '0S/VS' 00076500
12 GO TO END-CHANGE. 00077000
13 IF WHERE-USED IS NOT EQUAL TO 'PR' 00078000
14 GO TO END-CHANGE. 00079000
15 MOVE 'N' TO UNTIL-FLAG. 00080000
16 MOVE TOKEN-POSITION TO POSITION-SAVE. 00081000
17 MOVE TOKEN-POINTER TO TOKEN-POINTER-SAVE. 00082000
00083000

18 MOVE POSITION-SAVE TO STARTING-POSITION. 00086000
00087000

19 PERFORM GET-NEXT-TOKEN. 00088000
20 PERFORM BYPASS-IDENTIFIER. 00089000
21 IF TOKEN-TEXT IS EQUAL TO 'TALLYING' 00090000
22 MOVE TOKEN-POINTER-SAVE TO TOKEN-POINTER 00091000
00091100

23 PERFORM GET-TOKEN 00092000
24 PERFORM REMOVE 00092103
25 MOVE '18MOVE ZERO TO TALLY' TO ADD-GROUP 00093000
26 PERFORM SUFFIX 00094000
27 PERFORM SPLIT-LINE 00094100
28 MOVE 'O7INSPECT' TO ADD-GROUP 00094402
29 PERFORM SUFFIX 00094602
30 MOVE 'ABJ6018' TO MESSAGE-ID 00095000
31 PERFORM EDIT-MESSAGE 00096000
32 MOVE 'A' TO INPUT-TEXT 00097000
33 MOVE TEXT-08 TO OUTPUT-TEXT 00098000
34 MOVE 7 TO RECEIVING-CHARACTER 00099000
35 MOVE 1 TO STARTING-CHARACTER 00100000
36 MOVE 1 TO LENGTH-OF-MOVE 00101000
37 PERFORM MOVE-LCP 00102000
38 MOVE OUTPUT-TEXT TO TEXT-08 00103000
39 ELSE 00104000
40 MOVE TOKEN-POINTER-SAVE TO TOKEN-POINTER 00105000
41 PERFORM GET-TOKEN 00106002
42 MOVE 'O7INSPECT' TO ADD-GROUP 00108002
43 PERFORM REPLACE. 00109002
44 MOVE 'ABJ6019' TO MESSAGE-ID. 00110000

17 APR 1998 03:06:46 PAGE

Appendix H. Sample output

2

207

5648-B05 V2R1
STMT SEQNBR

- IBM COBOL CONVERSION AID - SAMPLE RUN
AlB.. ... 2 o0 LCP SOURCE STATEMENTS ... 6

45 PERFORM EDIT-MESSAGE.
46 PERFORM GET-NEXT-TOKEN .
47 PERFORM BYPASS-IDENTIFIER.
48 IF TOKEN-TEXT = 'TALLYING'
49 PERFORM TALLYING-010 THRU TALLYING-END
50 ELSE
51 PERFORM REPLACING-010 THRU REPLACING-END.
52 GO TO END-CHANGE.
*
* CONVERSION OF FORMAT 1 .
¥ emmecsccccccc e e e e -———————
53 TALLYING-010.
54 MOVE '@5TALLY' TO ADD-GROUP.
55 PERFORM INSERT-AFTER.
56 MOVE '03FOR' TO ADD-GROUP.
57 PERFORM INSERT-AFTER.
58 PERFORM GET-NEXT-TOKEN.
% TOKEN-TEXT IS NOW : UNTIL OR ALL OR LEADING .
% HOLD TOKEN-TEXT .
59 MOVE TOKEN-TEXT TO HOLD-TOKEN.
60 MOVE TOKEN-LENGTH TO HOLD-LENGTH.
61 IF TOKEN-TEXT = 'UNTIL
62 MOVE '10CHARACTERS' TO ADD-GROUP
63 PERFORM REPLACE
64 PERFORM GET-NEXT-TOKEN
65 MOVE '06BEFORE' TO ADD-GROUP
66 PERFORM REPLACE.
67 PERFORM GET-NEXT-TOKEN.
% TOKEN-TEXT IS NOW LITERAL-1 .
% TRANSFORM LITERAL-1 IN ALPHA-LITERAL-1 .
68 PERFORM BLD-LITERAL THRU BLD-LITERAL-END .
69 MOVE TOKEN-TEXT TO HOLD-LITERAL.
70 MOVE TOKEN-LENGTH TO LITERAL-LENGTH.
71 PERFORM GET-NEXT-TOKEN.
% TOKEN-TEXT IS NOW ON THE REPLACING OPTION OF FORMAT 1 .
72 IF TOKEN-TEXT NOT = 'REPLACING'
73 GO TO TALLYING-END.
74 IF HOLD-TOKEN IS EQUAL TO 'UNTIL
75 MOVE '10CHARACTERS' TO ADD-GROUP
76 PERFORM INSERT-AFTER
77 PERFORM GET-NEXT-TOKEN 2 TIMES
78 PERFORM BLD-LITERAL THRU BLD-LITERAL-END
79 MOVE '06BEFORE' TO ADD-GROUP
80 PERFORM INSERT-AFTER

208 ccca

7 .IDENTFCN

00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00135000
00136000
00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000

17 APR 1998 03:06:46

PAGE

3

5648-B05 V2R1
STMT SEQNBR

- IBM COBOL CONVERSION AID - SAMPLE RUN
AlB.. ... 2 o0 LCP SOURCE STATEMENTS ... 6

81 MOVE HOLD-LITERAL TO ADD-TEXT
82 MOVE LITERAL-LENGTH TO ADD-LENGTH
83 PERFORM INSERT-AFTER .
84 IF HOLD-TOKEN NOT = 'UNTIL
85 MOVE HOLD-TOKEN TO ADD-TEXT
86 MOVE HOLD-LENGTH TO ADD-LENGTH
87 PERFORM INSERT-AFTER
88 MOVE HOLD-LITERAL TO ADD-TEXT
89 MOVE LITERAL-LENGTH TO ADD-LENGTH
90 PERFORM INSERT-AFTER
91 PERFORM GET-NEXT-TOKEN 2 TIMES
92 PERFORM BLD-LITERAL THRU BLD-LITERAL-END.
93 TALLYING-END.
94 EXIT.
% CONVERSION OF FORMAT 2 :
* L
95 REPLACING-010.
96 PERFORM GET-NEXT-TOKEN.
% TOKEN-TEXT IS NOW : UNTIL OR ALL OR LEADING .
97 IF TOKEN-TEXT NOT = 'UNTIL
98 PERFORM GET-NEXT-TOKEN
99 PERFORM BLD-LITERAL THRU BLD-LITERAL-END
100 PERFORM GET-NEXT-TOKEN 2 TIMES
101 PERFORM BLD-LITERAL THRU BLD-LITERAL-END
102 GO TO REPLACING-END.
% PROCESS THE UNTIL FIRST OPTION .
* REPLACE : UNTIL FIRST BY CHARACTERS BY
103 PERFORM REMOVE.
104 PERFORM REMOVE-NEXT-TOKEN.
105 MOVE '10CHARACTERS' TO ADD-GROUP.
106 PERFORM INSERT-AFTER.
107 PERFORM GET-NEXT-TOKEN.
% TOKEN-TEXT IS NOW LITERAL-3 .
% TRANSFORM LITERAL-3 IN ALPHA-LITERAL-3 .
% AND REMOVE LITERAL-3 .
108 MOVE 'Y' TO UNTIL-FLAG.
109 PERFORM BLD-LITERAL THRU BLD-LITERAL-END .
110 MOVE TOKEN-TEXT TO HOLD-LITERAL
111 MOVE TOKEN-LENGTH TO LITERAL-LENGTH.
112 PERFORM REMOVE.
113 MOVE 'N' TO UNTIL-FLAG.
114 PERFORM GET-NEXT-TOKEN 2 TIMES .
* MAINTAIN : BY LITERAL-4
115 PERFORM BLD-LITERAL THRU BLD-LITERAL-END .

GENERATE : BEFORE LITERAL-3

7 .IDENTFCN

00169000
00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00178000
00179000
00182000
00183000
00184000
00185000
00186000
00187000
00188000
00189000
00190000
00191000
00192000
00193000
00194000
00195000
00196000
00197000
00198000
00199000
00200000
00201000
00202000
00203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000
00214000
00215000
00216000
00217000
00218000
00219000
00220000
00221000
00222000
00223000
00224000
00225000
00226000
00228000

17 APR 1998 03:06:46 PAGE

Appendix H. Sample output

4

209

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN
STMT SEQNBR A 1 B.. ... 2 e LCP SOURCE STATEMENTS ... 6
116 MOVE 'O6BEFORE' TO ADD-GROUP.

117 PERFORM INSERT-AFTER.

118 MOVE HOLD-LITERAL TO ADD-TEXT.

119 MOVE LITERAL-LENGTH TO ADD-LENGTH.

120 PERFORM INSERT-AFTER.

121 REPLACING-END.

122 EXIT.

123 BLD-LITERAL .

124 IF TOKEN-TYPE-CODE IS EQUAL TO 'L'

125 OR TOKEN-TEXT IS EQUAL TO 'SPACE'

126 OR TOKEN-TEXT IS EQUAL TO 'SPACES'

127 OR TOKEN-TEXT IS EQUAL TO 'ZERO'

128 OR TOKEN-TEXT IS EQUAL TO 'ZEROES'

129 OR TOKEN-TEXT IS EQUAL TO 'ZEROS'

130 OR TOKEN-TEXT IS EQUAL TO 'LOW-VALUE'

131 OR TOKEN-TEXT IS EQUAL TO 'LOW-VALUES'

132 OR TOKEN-TEXT IS EQUAL TO 'HIGH-VALUE'

133 OR TOKEN-TEXT IS EQUAL TO 'HIGH-VALUES'

134 OR TOKEN-TEXT IS EQUAL TO 'QUOTE'

135 OR TOKEN-TEXT IS EQUAL TO 'QUOTES'

136 GO TO BLD-LITERAL-END .

137 MOVE SPACES TO STRING-TEXT .

138 MOVE SPACES TO STRING-DELIMITER .

139 PERFORM UNSTRING-LCP .

140 IF LITERAL-SEPARATOR IS EQUAL TO 'A'

141 MOVE '''"' TO STRING-WORD-01
142 MOVE '''' TO STRING-WORD-03
143 ELSE

144 MOVE '"' TO STRING-WORD-01
145 MOVE '"' TO STRING-WORD-03.
146 MOVE TOKEN-TEXT TO STRING-WORD-02 .

147 PERFORM STRING-LCP .

148 MOVE STRING-TEXT TO TOKEN-TEXT .

149 MOVE STRING-LENGTH TO TOKEN-LENGTH .

150 MOVE TOKEN-TEXT TO ADD-TEXT .

151 MOVE TOKEN-LENGTH TO ADD-LENGTH .

152 IF UNTIL-FLAG IS EQUAL TO 'N'

153 PERFORM REPLACE .

154 BLD-LITERAL-END .

155 EXIT .

TEXT DESCRIPTION -
LCP PROGRAM NAME -
TABLE DRIVEN CORE SIZE -

210 ccca

REPLACE EXAMINE WITH INSPECT
EXAMINE
3765

7 .IDENTFCN

00229000
00230000
00231000
00232000
00233000
00234000
00236000
00237000
00238000
00241000
00242000
00243000
00244000
00245000
00246000
00247000
00248000
00249000
00250000
00251000
00252000
00253000
00254000
00255000
00256000
00257000
00258000
00259000
00260000
00261000
00262000
00263000
00264000
00265000
00266000
00267000
00268000
00269000
00270000
00271000
00272000
00273000

17 APR 1998 03:06:46

PAGE

5

COBOL conversion

5648-B05 V2R1
SEQNBR-A 1 B.. ...

LINEID

000001
000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044
000045
000046
000047
000048
000049
000050
000051
000052
000053

- IBM COBOL CONVERSION AID -

2 o ..

IDENTIFICATION DIVISION.

PROGRAM-ID. ABJIVPO1.

PROGRAM CONVERTED BY

CCCA FOR VSE/ESA 5686-A07
CONVERSION DATE 04/20/98 17:34:42.

EE I

ECRE I I S R

*

*0LD** REMARKS.
*REMARKS .
*OLD**

LICENSED MATERIALS - PROPERTY OF IBM

5785-CCC 5785-ABJ 5648-B05 5686-A07

US GOVERNMENT USERS RESTRICTED RIGHTS - USE,
DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP
SCHEDULE CONTRACT WITH IBM CORP.

SAMPLE RUN
COBOL SOURCE STATEMENTS

(C) COPYRIGHT IBM CORP. 1982, 1998. ALL RIGHTS RESERVED.

7

THIS PROGRAM IS BEING WRITTEN TO TEST THE PROPER CONVERSION

* THIS PROGRAM IS BEING WRITTEN TO TEST THE PROPER CONVERSION

*QLDx

FROM 0S/VS COBOL SOURCE LANGUAGE TO IBM SOURCE LANGUAGE.

* FROM 0S/VS COBOL SOURCE LANGUAGE TO IBM SOURCE LANGUAGE.
*0LD** AUTHOR. XXXXXX.
*AUTHOR. XXXXXX.
*QLD** DATE-WRITTEN. JANUARY 24, 1983.
*DATE-WRITTEN. JANUARY 24, 1983.

*OLD**

QLDx

*

#0LD

*

*0LD**

*

*QLD**

*

*QLD**

*

*0QLD**

*

*QLD**

*

#0LD

*

CCONNOOOOE P WWMNN - =

NOTE - THE FOLLOWING AREAS ARE ADDRESSED
* NOTE - THE FOLLOWING AREAS ARE ADDRESSED

REMARKS

REMARKS

THEN

THEN

OTHERWISE

OTHERWISE

CURRENT-DATE

CURRENT-DATE

TIME-OF-DAY

TIME-OF-DAY

NOTE

NOTE

EXAMINE. . .TALLYING...REPLACING
EXAMINE. . .TALLYING...REPLACING
JUSTIFIED.

JUSTIFIED.

0LD# DATE-COMPILED. TODAYS DATE.
*DATE-COMPILED. TODAYS DATE.

EJECT

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

ABJIVPO1

15 APR 1998 15:59:39 PAGE

1

.IDENTFCN MSGID SEV ---DITAGNOSTICS ---

00001000
00002000

*00003000
*00004000
*00005000
*00006000
*00007000
*00008000
*00009000
*00010000
*00011000
*00012000
*00013000
*00014000

00015000 ABJ6011 00 REMARKS CHANGED TO COMMENT

00015000
00016000
00016000
00017000
00017000

00018000 ABJ6181 00 OBSOLETE ELEMENT IS REMOVED

00018000

00019000 ABJ6181 00 OBSOLETE ELEMENT IS REMOVED

00019000
00020000
00021000
00021000
00022000
00022000
00023000
00023000
00024000
00024000
00025000
00025000
00026000
00026000
00027000
00027000
00028000
00028000
00029000
00029000
00030000

00031000 ABJ6181 00 OBSOLETE ELEMENT IS REMOVED

00031000
00032000
00033000
00034000
00035000

Appendix H. Sample output

211

5648-B05 V2R1

LINEID ~ SEQNBR-

000054
000055
000056
000057
000058
000059 *0OLD+*=
000060 *OLD**
000061 *OLD*=
000062
000063
000064
000065
000066
000067
000068
000069
000070
000071
000072
000073
000074
000075
000076
000077
000078
000079
000080
000081
000082
000083
000084
000085
000086
000087
000088
000089
000090
000091
000092
000093
000094
000095
000096
000097
000098
000099
000100
000101
000102
000103
000104
000105
000106

212 cccAa

- IBM COBOL CONVERSION AID - SAMPLE RUN
AlB.. ... 2 o0 COBOL SOURCE STATEMENTS ... 6

SELECT PRINT-FILE
ASSIGN TO UT-3330-S-DDPRINT.
DATA DIVISION.
FILE SECTION.
FD PRINT-FILE
RECORDING MODE IS F
LABEL RECORDS ARE STANDARD
DATA RECORD IS OUT-LINE.

01 OUT-LINE PIC X(80).
WORKING-STORAGE SECTION.
01 LCP-TIME-OF-DAY-68 PIC 9(6).
01 LCP-TIME-OF-DAY-74.
05 LCP-TIME-74 PIC 9(6).
05 FILLER PIC 9(2).
01 LCP-CURRENT-DATE-68.
05 LCP-MONTH PIC X(2).
05 FILLER PIC X VALUE "/".
05 LCP-DAY1 PIC X(2).
05 FILLER PIC X VALUE "/".
05 LCP-YEAR PIC X(2).
01 LCP-DATE-NEW-74.
05 LCP-YEAR PIC X(2).
05 LCP-MONTH PIC X(2).
05 LCP-DAY1 PIC X(2).
77 MY-COUNTER PIC 9(5) VALUE 0.
77 TRIPSWCH PIC 9 VALUE ©
77 PASSWCH PIC 9 VALUE 0.
77 FAILSWCH PIC 9 VALUE 1.
77 CURRFLAG PIC 9 VALUE ©
77 TOFDFLAG PIC 9 VALUE 0.
77 1 PIC 9 VALUE 0.
77 DATEL PIC X(8) VALUE SPACES.
77 DATE2 PIC X(8) VALUE SPACES.
77 DATE3 PIC X(8) VALUE SPACES.
77 TIMEL PIC X(6) VALUE SPACES.
77 TIME2 PIC X(6) VALUE SPACES.
77 TIME3 PIC X(6) VALUE SPACES.

01 ORIGINAL-NUMBER.
05 FILLER PIC 9(18) VALUE 0.
05 FILLER PIC 9(18) VALUE 0.
05 FILLER PIC 9(18) VALUE 000000009099843576.
05 FILLER PIC 9(18) VALUE 121212121212121290.

01 THIS-DEF REDEFINES ORIGINAL-NUMBER.
03 A-NUMBER OCCURS 2 TIMES.

05 LINEL PIC 9(18).
05 LINE2 PIC 9(18).
01 A-POEM.
03 LINEL.

05 FILLER PIC X(20) VALUE "ROSES ARE RED VIOLET".

ABJIVPO1

. IDENTFCN

00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00042000
00044000
00045000

00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000

MSGID SEV

ABJ6119 00
ABJ6181 00
ABJ6181 00
ABJ6004 00

ABJ6002 00

15 APR 1998 15:59:39 PAGE 2
---DIAGNOSTICS ---

RECORDING MODE CLAUSE REMOVED
OBSOLETE ELEMENT IS REMOVED
OBSOLETE ELEMENT IS REMOVED

LCP-TIME-OF-DAY-68 GENERATED
IN WORKING-STORAGE
LCP-CURRENT-DATE-68 GENERATED
IN WORKING-STORAGE

5648-B05 V2R1
SEQNBR-A 1 B.. ... 2 o0

LINEID

000107
000108
000109
000110
000111
000112
000113
000114
000115
000116
000117
000118
000119
000120
000121
000122
000123
000124
000125
000126
000127
000128
000129
000130
000131
000132
000133
000134
000135
000136
000137
000138
000139
000140
000141
000142
000143
000144
000145
000146
000147
000148
000149
000150
000151
000152
000153
000154

000155
000156
000157
000158

*QLD**

*QLD**

- IBM COBOL CONVERSION AID -
COBOL SOURCE STATEMENTS ... 6

01

01

01

01

01

01

01

01

05 FILLER
03 LINE2.

05 FILLER

05 FILLER

FAIL1CONZ.
03 FILLER
03 CPLACE

FAIL2CON.

03 FILLER
03 FILLER
03 FILLER
03 FILLER

FAIL2CONZ.
03 FILLER
03 DPLACE

FAIL3CON.

03 FILLER
03 FILLER
03 FILLER
03 FILLER

FAIL3CONI.
03 FILLER

FAIL3CONZ.
03 FILLER
03 TPLACE

FAILCON.
03 FILLER
03 FILLER

SUCCESS.
03 FILLER
03 FILLER

EJECT

PROCEDURE DIVISION.
THIS-IS-A SECTION.
START-HERE.

MOVE TIME-OF-DAY TO TIME1
ACCEPT LCP-TIME-OF-DAY-74 FROM TIME
MOVE LCP-TIME-74 TO LCP-TIME-OF-DAY-68
MOVE LCP-TIME-OF-DAY-68 TO TIME1

PIC

PIC
PIC

PIC
PIC

PIC
PIC
PIC
PIC

PIC
PIC

PIC
PIC
PIC
PIC

PIC

PIC
PIC

PIC
PIC

PIC
PIC

OPEN OUTPUT PRINT-FILE
MOVE CURRENT-DATE TO DATE1
ACCEPT LCP-DATE-NEW-74 FROM DATE

MOVE CORRESPONDING LCP-DATE-NEW-74 TO LCP-CURRENT-DATE-68

X(20)

X(20)
X(20)

XX
X(20)

X(20)
X(20)
X(20)
X(20)

XX
X(8)

X(20)
X(20)
X(20)
X(20)

X(20)

XX
X(6)

X(20)
X(20)

X(20)
X(20)

VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE
VALUE
VALUE

VALUE
VALUE

VALUE
VALUE
VALUE
VALUE

VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

SAMPLE RUN

"S ARE BLUE, ",

"SUGAR IS SWEET AND S".

"0 ARE YOU.

SPACES.
SPACES.

"ALL THREE READINGS 0".
"F 'CURRENT-DATE' SHO".
"ULD BE THE SAME, BUT".

" THEY ARE:

SPACES.
SPACES.

"THE THREE READINGS 0".
"F 'TIME-OF-DAY' SHOU".
"LD BE EQUAL OR IN AS".

"CENDING ORDER,

"BUT THEY ARE: ",

SPACES.
SPACES.

"TEST CASE SAMPLE F".
"AILED. .

"TEST CASE SAMPLE I".
"S SUCCESSFUL. .

ABJIVPO1 15 APR 1998 15:59:39 PAGE 3

00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00118000

00119000
00120000
00120000

ABJ6005 00 NEW CODE GENERATED FOR
TIME-OF-DAY

Appendix H. Sample output

.IDENTFCN MSGID SEV ---DIAGNOSTICS ---

213

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN ABJIVPO1 15 APR 1998 15:59:39 PAGE 4

LINEID SEQNBR-A 1 B.. ... 2 e COBOL SOURCE STATEMENTS ... 6 7 .IDENTFCN MSGID SEV ---DIAGNOSTICS ---

000159 MOVE LCP-CURRENT-DATE-68 TO DATEL ABJ6003 00 NEW CODE GENERATED FOR
CURRENT-DATE

000160 *OLD=** MOVE CURRENT-DATE TO DATE2 00121000

000161 ACCEPT LCP-DATE-NEW-74 FROM DATE 00121000

000162 MOVE CORRESPONDING LCP-DATE-NEW-74 TO LCP-CURRENT-DATE-68

000163 MOVE LCP-CURRENT-DATE-68 TO DATE2 ABJ6003 00 NEW CODE GENERATED FOR
CURRENT-DATE

000164 *0LD== MOVE CURRENT-DATE TO DATE3. 00122000

000165 ACCEPT LCP-DATE-NEW-74 FROM DATE 00122000

000166 MOVE CORRESPONDING LCP-DATE-NEW-74 TO LCP-CURRENT-DATE-68

000167 MOVE LCP-CURRENT-DATE-68 TO DATE3. ABJ6003 00 NEW CODE GENERATED FOR
CURRENT-DATE

000168 00123000

000169 *0LD== MOVE TIME-OF-DAY TO TIME2. 00124000

000170 ACCEPT LCP-TIME-OF-DAY-74 FROM TIME 00124000

000171 MOVE LCP-TIME-74 TO LCP-TIME-OF-DAY-68

000172 MOVE LCP-TIME-OF-DAY-68 TO TIMEZ. ABJ6005 00 NEW CODE GENERATED FOR
TIME-OF-DAY

000173 IF DATE1 EQUAL DATE2 AND EQUAL DATE3 THEN 00125000

000174 NEXT SENTENCE 00126000

000175 *0LD=** OTHERWISE 00127000 ABJ6021 00 OTHERWISE REPLACED BY ELSE

000176 ELSE 00127000

000177 MOVE FAILSWCH TO TRIPSWCH 00128000

000178 MOVE DATE1 TO DPLACE 00129000

000179 WRITE OUT-LINE FROM FAIL2CON 00130000

000180 WRITE OUT-LINE FROM FAIL2CONZ2 00131000

000181 MOVE DATE2 TO DPLACE 00132000

000182 WRITE OUT-LINE FROM FAIL2CON2 00133000

000183 MOVE DATE3 TO DPLACE 00134000

000184 WRITE OUT-LINE FROM FAIL2CONZ. 00135000

000185 *0QLD** MOVE TIME-OF-DAY TO TIME3. 00136000

000186 ACCEPT LCP-TIME-OF-DAY-74 FROM TIME 00136000

000187 MOVE LCP-TIME-74 TO LCP-TIME-OF-DAY-68

000188 MOVE LCP-TIME-OF-DAY-68 TO TIME3. ABJ6005 00 NEW CODE GENERATED FOR
TIME-OF-DAY

000189 IF (TIMEL LESS THAN TIME2 OR EQUAL TIME2) AND 00137000

000190 (TIME2 LESS THAN TIME3 OR EQUAL TIME3) THEN 00138000

000191 NEXT SENTENCE 00139000

000192 *0LD=* OTHERWISE 00140000 ABJ6021 00 OTHERWISE REPLACED BY ELSE

000193 ELSE 00140000

000194 MOVE FAILSWCH TO TRIPSWCH 00141000

000195 MOVE TIME1 TO TPLACE 00142000

000196 WRITE OUT-LINE FROM FAIL3CON 00143000

000197 WRITE OUT-LINE FROM FAIL3CON1 00144000

000198 WRITE OUT-LINE FROM FAIL3CON2 00145000

000199 MOVE TIME2 TO TPLACE 00146000

000200 WRITE OUT-LINE FROM FAIL3CONZ 00147000

000201 MOVE TIME3 TO TPLACE 00148000

000202 WRITE OUT-LINE FROM FAIL3CON2. 00149000

000203 AFTER-THOUGHT. 00150000

000204 *0LD=*= EXAMINE A-POEM TALLYING ALL SPACES REPLACING BY "=" 00151000 ABJ6018 00 TALLY IS INITIALIZED

000205 MOVE ZERO TO TALLY 00151000 ABJ6019 00 EXAMINE REPLACED BY INSPECT

000206 INSPECT A-POEM TALLYING TALLY FOR ALL SPACES REPLACING ALL

214 ccca

5648-B05 V2R1

LINEID

000207
000208
000209
000210
000211
000212
000213
000214
000215
000216
000217
000218
000219
000220
000221
000222
000223
000224
000225
000226
000227
000228
000229
000230
000231
000232
000233
000234
000235
000236
000237
000238
000239
000240
000241
000242
000243
000244
000245
000246
000247
000248
000249
000250
000251

SEQNBR-A 1 B.. ... 2

#0LD%

*0QLD**

*0QLD**

*QLD**

*QLD**

*OLD**

*QLD**

*QLD**

- IBM COBOL CONVERSION AID - SAMPLE RUN
cee e COBOL SOURCE STATEMENTS ... 6
SPACES BY "x"

MOVE TALLY TO MY-COUNTER
MOVE LINE1 OF A-POEM TO OUT-LINE WRITE OUT-LINE
MOVE LINE2 OF A-POEM TO OUT-LINE WRITE OUT-LINE
EXAMINE A-POEM TALLYING ALL "x".
MOVE ZERO TO TALLY
INSPECT A-POEM TALLYING TALLY FOR ALL "=".
IF TALLY = MY-COUNTER

MOVE "OK" TO OUT-LINE WRITE OUT-LINE
OTHERWISE
ELSE

MOVE "BAH" TO OUT-LINE WRITE OUT-LINE.
EXAMINE A-POEM TALLYING ALL "E"
MOVE ZERO TO TALLY
INSPECT A-POEM TALLYING TALLY FOR ALL "E"
PERFORM THREE-LINES
EXAMINE A-POEM TALLYING UNTIL FIRST "."
MOVE ZERO TO TALLY

INSPECT A-POEM TALLYING TALLY FOR CHARACTERS BEFORE "."

PERFORM THREE-LINES

EXAMINE A-POEM TALLYING LEADING "R"

MOVE ZERO TO TALLY

INSPECT A-POEM TALLYING TALLY FOR LEADING "R"
PERFORM THREE-LINES

MOVE 2 TO I

EXAMINE A-NUMBER(I) TALLYING ALL 1

MOVE ZERO TO TALLY

INSPECT A-NUMBER(I) TALLYING TALLY FOR ALL "1"
PERFORM THREE-LINES

EXAMINE A-NUMBER(I) TALLYING LEADING @ REPLACING BY 2.

MOVE ZERO TO TALLY

INSPECT A-NUMBER(I) TALLYING TALLY FOR LEADING "0" REPLACING
LEADING "0" BY "2".
THREE-LINES.

ADD TALLY TO MY-COUNTER.
MOVE TALLY TO OUT-LINE WRITE OUT-LINE
MOVE MY-COUNTER TO OUT-LINE WRITE OUT-LINE.

THE-END.
IF TRIPSWCH EQUAL FAILSWCH OR MY-COUNTER NOT EQUAL 125

WRITE OUT-LINE FROM FAILCON
OTHERWISE
ELSE

WRITE OUT-LINE FROM SUCCESS.
CLOSE PRINT-FILE.
STOP RUN.

7

ABJIVPO1
.IDENTFCN MSGID SEV

00152000
00153000
00154000
00155000
00155000

00156000
00157000
00158000
00158000
00159000
00160000
00160000

00161000
00162000
00162000

00163000
00164000
00164000

00165000
00166000
00167000
00167000

00168000
00169000
00169000

00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00177000
00178000
00179000
00180000

ABJ6018
ABJ6019

ABJ6021

ABJ6018
ABJ6019

ABJ6018
ABJ6019

ABJ6018
ABJ6019

ABJ6018

ABJ6019

ABJ6018
ABJ6019

ABJ6021

ABJ6126

Appendix H. Sample output

00
00

00
00

00
00

00
00

00
00

00
00

00

15 APR 1998 15:59:39 PAGE 5
---DIAGNOSTICS ---

TALLY IS INITIALIZED
EXAMINE REPLACED BY INSPECT

OTHERWISE REPLACED BY ELSE

TALLY IS INITIALIZED
EXAMINE REPLACED BY INSPECT

TALLY IS INITIALIZED
EXAMINE REPLACED BY INSPECT

TALLY IS INITIALIZED
EXAMINE REPLACED BY INSPECT

TALLY IS INITIALIZED
EXAMINE REPLACED BY INSPECT

TALLY IS INITIALIZED
EXAMINE REPLACED BY INSPECT

OTHERWISE REPLACED BY ELSE

215

5648-B05 V2R1

CONVERSION FROM DOS/VS COBOL

OPTIONS IN EFFECT :
Check procedure names
Flag Report Writer statements...
Remove obsolete elements
Negate implicit EXIT PROGRAM ...
Generate END PROGRAM header
Compile after converting
Flag manual changes (new source)
Add DATE FORMAT clauses (MLE)

Remove VALUE clauses in FS & LS
FLAG:IF FILE-STATUS (NOT) = "00"
Flag BLL cell arithmetic
BLL cell conversion method......
Search source for literal delim.
Literal delimiter (QUOTE/APOST).
OPTION-15

- IBM COBOL CONVERSION AID -

SAMPLE RUN ABJIVPO1

TO COBOL FOR VSE/ESA

YES Source language Tevel DOS/VS COBOL LANGLVL(1)

R S 3 NO
....... YES Lines per report page60

YES VSE system date format.......... MM/DD/YY

NO Resequence source lines NO
....... YES

NO Reserved word suffix 74

NO Generate new program............ YES

YES Generate new copy members YES

YES Replace Tike-named copy members. NO
....... YES Print old source lines YES

A Print copy members YES

YES Print diagnostics of Tevel >=... 00

QUOTE Generate tokenization Tisting... NO

NO SQL et NO

HIGHEST SEVERITY MESSAGE FOR THIS CONVERSION: 00

0033 MESSAGES ISSUED
0033 MESSAGES PRINTED

LINEID MSGID RC
000019 ABJ6011 00
000025 ABJ6181 00
000027 ABJ6181 00
000049 ABJ6181 00
000062 ABJ6119 00
000062 ABJ6181 00
000062 ABJ6181 00
000064 ABJ6004 00
000064 ABJ6002 00
000154 ABJ6005 00
000159 ABJ6003 00
000163 ABJ6003 00
000167 ABJ6003 00
000172 ABJ6005 00
000176 ABJ6021 00
000188 ABJ6005 00
000193 ABJ6021 00
000205 ABJ6018 00
000205 ABJ6019 00
000212 ABJ6018 00
000212 ABJ6019 00
000217 ABJ6021 00
000220 ABJ6018 00
000220 ABJ6019 00
000224 ABJ6018 00
000224 ABJ6019 00
000228 ABJ6018 00
000228 ABJ6019 00
5648-B05 V2R1 - IBM COBOL
000233 ABJ6018 00
000233 ABJ6019 00
000237 ABJ6018 00
000237 ABJ6019 00
000248 ABJ6021 00

216 CCCcA

MESSAGE TEXT

REMARKS CHANGED TO COMMENT

OBSOLETE ELEMENT IS REMOVED
OBSOLETE ELEMENT IS REMOVED
OBSOLETE ELEMENT IS REMOVED
RECORDING MODE CLAUSE REMOVED
OBSOLETE ELEMENT IS REMOVED
OBSOLETE ELEMENT IS REMOVED
LCP-TIME-OF-DAY-68 GENERATED IN WORKING-STORAGE
LCP-CURRENT-DATE-68 GENERATED IN WORKING-STORAGE
NEW CODE GENERATED FOR TIME-OF-DAY
NEW CODE GENERATED FOR CURRENT-DATE
NEW CODE GENERATED FOR CURRENT-DATE
NEW CODE GENERATED FOR CURRENT-DATE
NEW CODE GENERATED FOR TIME-OF-DAY
OTHERWISE REPLACED BY ELSE

NEW CODE GENERATED FOR TIME-OF-DAY
OTHERWISE REPLACED BY ELSE

TALLY IS INITIALIZED

EXAMINE REPLACED BY INSPECT

TALLY IS INITIALIZED

EXAMINE REPLACED BY INSPECT
OTHERWISE REPLACED BY ELSE

TALLY IS INITIALIZED

EXAMINE REPLACED BY INSPECT

TALLY IS INITIALIZED

EXAMINE REPLACED BY INSPECT

TALLY IS INITIALIZED

EXAMINE REPLACED BY INSPECT

CONVERSION AID - SAMPLE RUN

TALLY IS INITIALIZED
EXAMINE REPLACED BY INSPECT
TALLY IS INITIALIZED
EXAMINE REPLACED BY INSPECT
OTHERWISE REPLACED BY ELSE

ABJIVPO1

15 APR 1998 15:59:39 PAGE 6

15 APR 1998 15:59:39 PAGE 7

COBOL conversion with COPY

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN

LINEID SEQNBR-A 1 B.. ... 2 o .. COBOL SOURCE STATEMENTS ... 6
000001 IDENTIFICATION DIVISION.

000002 PROGRAM-ID. ABJIVPOZ.

000003 * PROGRAM CONVERTED BY

000004 * CCCA FOR VSE/ESA 5686-A07

000005 * CONVERSION DATE 04/20/98 17:47:56.
000006 *

000007 % LICENSED MATERIALS - PROPERTY OF IBM

000008 *

000009 * 5785-CCC 5785-ABJ 5648-B05 5686-A07

000010 *

000011 * (C) COPYRIGHT IBM CORP. 1982, 1998. ALL RIGHTS RESERVED.
000012 *

000013 * US GOVERNMENT USERS RESTRICTED RIGHTS - USE,
000014 * DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP
000015 * SCHEDULE CONTRACT WITH IBM CORP.

000016 *

000017 R L
000018 *0OLD** REMARKS.

000019 *REMARKS .

000020 *0LD=** THIS PROGRAM COMPUTES THE GROSS SALARY, TAX AND NET SALARY
000021 * THIS PROGRAM COMPUTES THE GROSS SALARY, TAX AND NET SALARY
000022 *0OLD** OF A GROUP OF EMPLOYEES.

000023 * OF A GROUP OF EMPLOYEES.

000024 *0LD** AUTHOR. YOUR NAME FOLLOWED BY A PERIOD.

000025 *AUTHOR. YOUR NAME FOLLOWED BY A PERIOD.

000026 *OLD+* INSTALLATION. IBM-370.

000027 *INSTALLATION. IBM-370.

000028 *OLD** DATE-WRITTEN. FEB 27,1981.

000029 *DATE-WRITTEN. FEB 27,1981.

000030 *

000031 *0OLD=** NOTE - THE FOLLOWING AREAS ARE ADDRESSED
000032 * NOTE - THE FOLLOWING AREAS ARE ADDRESSED
000033 *0OLD=** 1 REMARKS

000034 * 1 REMARKS

000035 *0OLD** 2 NOTE

000036 * 2 NOTE

000037 * 3 COPY FOR LANGLVL(1).

000038 *

000039 *0OLD+* DATE-COMPILED. TODAYS DATE.

000040 *DATE-COMPILED. TODAYS DATE.

000041 EJECT

000042 ENVIRONMENT DIVISION.

000043 CONFIGURATION SECTION.

000044 *SOURCE-COMPUTER. IBM-370.

000045 *0BJECT-COMPUTER. IBM-370.

000046 INPUT-OUTPUT SECTION.

000047 FILE-CONTROL.

000048 SELECT PRINT-OUT ASSIGN TO UR-2540R-S-PRINT.
000049 DATA DIVISION.

000050 *

000051 FILE SECTION.

000052 FD PRINT-OUT

000053 *0OLD** LABEL RECORDS ARE OMITTED

7

ABJIVPO2 15 APR 1998 16:13:43 PAGE
.IDENTFCN MSGID SEV ---DITAGNOSTICS ---

00001000
00002000

*00003000
*00004000
*00005000
*00006000
*00007000
*00008000
*00009000
*00010000
*00011000
*00012000
*00013000
*00014000
00015000
00015000
00016000
00016000
00017000
00017000
00018000
00018000
00019000
00019000
00020000
00020000
00021000
00022000
00022000
00023000
00023000
00024000
00024000
00025000
00026000
00027000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000

ABJ6011 00 REMARKS CHANGED TO COMMENT

ABJ6181 00 OBSOLETE ELEMENT IS REMOVED
ABJ6181 00 OBSOLETE ELEMENT IS REMOVED

ABJ6181 00 OBSOLETE ELEMENT IS REMOVED

ABJ6181 00 OBSOLETE ELEMENT IS REMOVED

ABJ6181 00 OBSOLETE ELEMENT IS REMOVED

Appendix H. Sample output

1

217

5648-B05 V2R1

- IBM COBOL CONVERSION AID -
COBOL SOURCE STATEMENTS

SAMPLE RUN

DATA RECORDS ARE OUTPUT-RECORD ENTRY-DET.

OUTPUT-RECORD COPY ABJL901 REPLACING

COPY ABJL902 REPLACING STEMPL BY PREMPL STHOURS BY PRHOURS

01

STD-LINE== BY

COPY ABJL902 REPLACING STEMPL BY PREMPL STHOURS BY PRHOURS
STSALARY BY PRSALARY STTAX BY PRTAX STNET BY PRNET.

NUM-OF-ITEMS COPY ABJL903 REPLACING ==77 A== BY ==

X(8).
X(3).
X.
X(8).
99.
X(4).
777.99.

LINEID ~ SEQNBR-A 1 B.. ... 2 o0
000054 *QLD=*=

000055 .

000056 *0LD+* 01 OUTPUT-RECORD COPY ABJL901.
000057 01

000058

000059+ 01 STD-LINE PIC X(132).
000060 *0OLD** 01

000061

000062

000063+ 01 ENTRY-DET.

000064+ 03 FILLER PIC
000065+ 03 FILLER PIC
000066+ 03 STEMPL PIC
000067+ 03 FILLER PIC
000068+ 03 STHOURS PIC
000069+ 03 FILLER PIC
000070+ 03 STSALARY PIC
000071+ 03 FILLER PIC
000072+ 03 STTAX PIC
000073+ 03 FILLER PIC
000074+ 03 STNET PIC
000075+ 03 FILLER PIC
000076 *

000077 WORKING-STORAGE SECTION.
000078 *

000079 *0LD*= 77 NUM-OF-ITEMS COPY ABJL903.
000080 77

000081+ 77 A PIC 99 VAL
000082 *

000083 *0LD*= 77 COPY ABJL903A.
000084 COPY ABJL903A.

000085+ 77 WORK-GROSS PIC
000086 *

000087 77 WORK-TAX PIC
000088 77 WORK-NET PIC
000089 77 SUB1 PIC
000090 77 ERROR-FLAG PIC
000091 01 INPUT-AREA.

000092 03 ENTRYA.

000093 06 FILLER PIC
000094 06 FILLER PIC
000095 03 ENTRYB.

000096 06 FILLER PIC
000097 06 FILLER PIC
000098 03 ENTRYC.

000099 06 FILLER PIC
000100 06 FILLER PIC
000101 03 ENTRYD.

000102 06 FILLER PIC
000103 06 FILLER PIC
000104 03 ENTRYE.

000105 06 FILLER PIC
000106 06 FILLER PIC

218 ccca

UE 12.

9(3)Vv9(4).
9(3)v9(4).
9(3)Vv9(4).

99 VALUE 1.

9 VALUE 0.

X VALUE "A".
99 VALUE 40.
X VALUE "B".
99 VALUE 41.
X VALUE "C".
99 VALUE 39.
X VALUE "D".
99 VALUE 16.
X VALUE "E".
99 VALUE 21.

7

ABJIVPO2

. IDENTFCN

00041000
00040000
00042000
00042000
00042000

00043000
00043000
00044000

00045000
00046000
00047000
00048000
00048000

00049000
00050000
00050000

00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000

MSGID SEV

ABJ6181 00

ABJ6088 00

ABJ6088 00

15 APR 1998

16:13:43 PAGE 2

---DIAGNOSTICS ---

OBSOLETE ELEMENT IS REMOVED

LANGLEVEL 1 COPY IS CHANGED

LANGLEVEL 1 COPY IS CHANGED

ABJ6088 00 LANGLEVEL 1 COPY IS CHANGED

ABJ6088 00 LANGLEVEL 1 COPY IS CHANGED

5648-B05 V2R1
SEQNBR-A 1 B

LINEID

000107
000108
000109
000110
000111
000112
000113
000114
000115
000116
000117
000118
000119
000120
000121
000122
000123
000124
000125
000126
000127
000128
000129
000130
000131+
000132+
000133+
000134+
000135
000136
000137
000138
000139
000140
000141
000142
000143
000144
000145
000146
000147
000148
000149
000150
000151
000152
000153
000154
000155
000156
000157
000158
000159

*

*0LD** 01

03

03

03

03

03

03

03

COPY ABJL904 REPLACING A BY REDEF-AREA B BY INPUT-AREA.

ENTRYF.
06 FILLER
06 FILLER
ENTRYG.
06 FILLER
06 FILLER
ENTRYH.
06 FILLER
06 FILLER
ENTRYI.
06 FILLER
06 FILLER
ENTRYJ.
06 FILLER
06 FILLER
ENTRYK.
06 FILLER
06 FILLER
ENTRYL.
06 FILLER
06 FILLER

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

PIC
PIC

- IBM COBOL CONVERSION AID -

SAMPLE RUN

COBOL SOURCE STATEMENTS

X
99

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

VALUE
VALUE

wen
44,
ngr
55.
s
60.
W
41.
ngn
42.
ngn
39.

o
32.

COPY ABJL904 REPLACING A BY REDEF-AREA B BY INPUT-AREA.
01 A REDEFINES B.
03 ENTRY-ITEM OCCURS 12 TIMES.

01

01

01

06 EMPLOYEE

06 HOURS-WORK PIC 99.

HDG-1.

03
03
03
03

FILLER
FILLER
FILLER
FILLER

HDG-2.

03
03
03
03

FILLER
FILLER
FILLER
FILLER
FILLER

HDG-3.

03
03
03
03
03
03
03

FILLER
FILLER
FILLER
FILLER
FILLER
FILLER
FILLER

HDG-4.

03
03
03
03

FILLER
FILLER
FILLER
FILLER

PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC
PIC
PIC
PIC

PIC
PIC
PIC
PIC

PIC X.

X(8)

X(21)
X(21)
X(82)

X(8)

X(10)
X(16)
X(13)
X(85)

X(8)
X(10)
X(8)
X(8)
X(10)
X(6)
X(82)

X(8)
X(10)
X(8)
X(8)

VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

VALUE
VALUE
VALUE
VALUE

SPACES.

SPACES.

SPACES.
SPACES.

"HOURS ~ GROSS

"TAX
SPACES.

SPACES.
"EMPLOYEE
"WORKED ".
"SALARY ",
"DEDUCTED
"SALARY".
SPACES.

SPACES.

NET".

7

ABJIVPO2

15 APR 1998 16:13:43 PAGE

3

.IDENTFCN MSGID SEV ---DIAGNOSTICS ---

00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00094000

00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000

ABJ6088 00 LANGLEVEL 1 COPY IS CHANGED

Appendix H. Sample output

219

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN ABJIVPO2 15 APR 1998 16:13:43 PAGE 4

LINEID ~ SEQNBR-A 1 B.. ... 2 o0 COBOL SOURCE STATEMENTS ... 6 7 .IDENTFCN MSGID SEV ---DIAGNOSTICS ---
000160 03 FILLER PIC X(10) VALUE " ", 00120000
000161 03 FILLER PIC X(6) VALUE " " 00121000
000162 03 FILLER PIC X(82) VALUE SPACES. 00122000
000163 PROCEDURE DIVISION. 00123000
000164 OPEN OUTPUT PRINT-OUT. 00124000
000165 WRITE OUTPUT-RECORD FROM HDG-1. 00125000
000166 WRITE OUTPUT-RECORD FROM HDG-2. 00126000
000167 WRITE OUTPUT-RECORD FROM HDG-3. 00127000
000168 WRITE OUTPUT-RECORD FROM HDG-4. 00128000
000169 PERFORM PROCESS THRU PROCESS2 VARYING SUBL FROM 1 BY 1 00129000
000170 UNTIL SUBL GREATER THAN NUM-OF-ITEMS. 00130000
000171 WRITE OUTPUT-RECORD FROM HDG-4. 00131000
000172 GO TO EOJ-ROUTINE. 00132000
000173 PROCESS. 00133000
000174 MOVE SPACES TO ENTRY-DET. 00134000
000175 MOVE EMPLOYEE(SUB1) TO PREMPL. 00135000
000176 MOVE HOURS-WORK(SUB1) TO PRHOURS. 00136000
000177 COMPUTE WORK-GROSS ROUNDED = HOURS-WORK(SUB1) * 4.00. 00137000
000178 MOVE WORK-GROSS TO PRSALARY. 00138000
000179 IF WORK-GROSS GREATER THAN 150.00 00139000
000180 COMPUTE WORK-TAX ROUNDED = (WORK-GROSS - 150) * .2 + 5 00140000
000181 GO TO PROCESS2. 00141000
000182 IF WORK-GROSS NOT LESS THAN 100.00 00142000
000183 COMPUTE WORK-TAX = (WORK-GROSS - 100) * .1 00143000
000184 GO TO PROCESS2. 00144000
000185 MOVE ZEROS TO WORK-TAX. 00145000
000186 PROCESS2. 00146000
000187 MOVE WORK-TAX TO PRTAX 00147000
000188 COMPUTE WORK-NET = WORK-GROSS - WORK-TAX 00148000
000189 MOVE WORK-NET TO PRNET 00149000
000190 WRITE ENTRY-DET. 00150000
000191 EOJ-ROUTINE. 00151000
000192 IF ERROR-FLAG = ZERO 00152000
000193 MOVE "TEST CASE LCPTSTO9 IS SUCCESSFUL."™ TO OUTPUT-RECORD00153000
000194 WRITE OUTPUT-RECORD 00154000
000195 *QLD*= OTHERWISE 00155000 ABJ6021 00 OTHERWISE REPLACED BY ELSE
000196 ELSE 00155000
000197 MOVE "TEST CASE LCPTSTO9 FAILED." TO OUTPUT-RECORD 00156000
000198 WRITE OUTPUT-RECORD. 00157000
000199 CLOSE PRINT-OUT. 00158000
000200 STOP RUN. 00159000 ABJ6126 99 #=-----mmmmm oo *

* END OF COBOL CONVERSION =
* 5648-B05 COBOL CONVERSION =

220 ccca

5648-B05 V2R1

CONVERSION FROM DOS/VS COBOL

OPTIONS IN EFFECT :
Check procedure names
Flag Report Writer statemen
Remove obsolete elements ..
Negate implicit EXIT PROGRAI

Generate END PROGRAM header

Compile after converting ..
Flag manual changes (new so
Add DATE FORMAT clauses (ML
Remove VALUE clauses in FS
FLAG:IF FILE-STATUS (NOT) =
Flag BLL cell arithmetic ..
BLL cell conversion method.
Search source for Tliteral d
Literal delimiter (QUOTE/AP!
OPTION-15 ..vvvvvivnnnnnnnn
HIGHEST SEVERITY MESSAGE FOR

0013 MESSAGES ISSUED

0013 MESSAGES PRINTED

LINEID MSGID RC
000019 ABJ6011 00
000025 ABJ6181 00
000027 ABJ6181 00
000029 ABJ6181 00
000040 ABJ6181 00
000055 ABJ6181 00
000055 ABJ6181 00
000057 ABJ6088 00
000061 ABJ6088 00
000080 ABJ6088 00
000084 ABJ6088 00
000130 ABJ6088 00
000196 ABJ6021 00

- IBM COBOL CONVERSION AID -

T

ts... YES
..... YES
M ... YES
NO
..... YES
urce) NO
E) NO
& LS YES
"00" YES
..... YES
YES
QuoTt

elim.
0ST).

THIS CONVE

MESSAGE T

REMARKS C
OBSOLETE
OBSOLETE
OBSOLETE
OBSOLETE
OBSOLETE
OBSOLETE
LANGLEVEL
LANGLEVEL
LANGLEVEL
LANGLEVEL
LANGLEVEL
OTHERWISE

SAMPLE RUN
0 COBOL FOR VSE/ESA

Source language Tlevel

CICS tiiiiiii ittt NO
Lines per report page 60
VSE system date format..........

Resequence source lines NO
Reserved word suffix 74
Generate new program............ YES
Generate new copy members YES

Replace like-named copy members. NO

Print old source lines YES
Print copy members YES
Print diagnostics of level >=... 00
E Generate tokenization Tisting... NO
SOL tee i e NO
RSION: 00
EXT

HANGED TO COMMENT
ELEMENT IS REMOVED
ELEMENT IS REMOVED
ELEMENT IS REMOVED
ELEMENT IS REMOVED
ELEMENT IS REMOVED
ELEMENT IS REMOVED
1 COPY IS CHANGED
1 COPY IS CHANGED
1 COPY IS CHANGED
1 COPY IS CHANGED
1 COPY IS CHANGED
REPLACED BY ELSE

ABJIVPO2 15 APR 1998 16:13:43

Appendix H. Sample output

PAGE 5

221

COBOL conversion with CICS commands

5648-B05 V2R1

LINEID SEQNBR-A 1 B.. ... 2 ...

- IBM COBOL CONVERSION AID -

000001 CBL QUOTE
ID DIVISION.
PROGRAM-ID. ABJIVPO3.
PROGRAM CONVERTED BY
CCCA FOR VSE/ESA 5686-A07

000002
000003
000004
000005
000006
000007
000008
000009
000010
000011
000012
000013
000014
000015
000016
000017
000018
000019
000020
000021
000022
000023
000024
000025
000026
000027
000028
000029
000030
000031
000032
000033
000034
000035
000036
000037
000038
000039
000040
000041
000042
000043
000044
000045
000046
000047
000048
000049
000050
000051
000052
000053

222 CCCA

L I

EE I I S

CONVERSION DATE 04/20/98 18:00:49.

SAMPLE RUN
... COBOL SOURCE STATEMENTS

ABJIVPO3
7 .IDENTFCN MSGID SEV ---DITAGNOSTICS ---

00001000
00002000
00003000

-- *00004000
LICENSED MATERIALS - PROPERTY OF IBM

5785-CCC 5785-ABJ 5648-B05 5686-A07

(C) COPYRIGHT IBM CORP. 1982, 1998. ALL RIGHTS RESERVED.

US GOVERNMENT USERS RESTRICTED RIGHTS - USE,
DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP

SCHEDULE CONTRACT WITH IBM CORP.

*00005000
*00006000
*00007000
*00008000
*00009000
*00010000
*00011000
*00012000
*00013000
*00014000

-- *00015000
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LCP-WS-ADDR-COMP
LCP-WS-ADDR-PNTR

77
77

77
77
77
77
77
77
77
77
01
01
01

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

PCB PIC X(4) VALUE
GN PIC X(4) VALUE
GU PIC X(4) VALUE

GNP PIC X(4) VALUE
TERM PIC X(4) VALUE

SAVE-TCAFCRC PIC
SAVE-TCADLTR PIC
SAVE-STATUS-CODE
SAVE-TCACCCA PIC

PAGE-OVERFLOW-CTR PIC

DFHBMSCA.

DFHBMPEM
DFHBMPNL
DFHBMASK
DFHBMUNP
DFHBMUNN
DFHBMPRO
DFHBMBRY
DFHBMDAR
DFHBMFSE
DFHBMPRF
DFHBMASF
DFHBMASB
DFHBMEOF
DFHBMDET
DFHSA
DFHCOLOR
DFHPS
DFHHLT

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

DX 3K 3K X X XX X X X X X XX XX X XX XX XX X

PIC S9(8) COMP.

REDEFINES LCP-WS-ADDR-COMP

USAGE POINTER.

"pCB .
-
ey v
NP "
"TERM"

X VALUE SPACE.
X VALUE SPACE.
PIC XX VALUE SPACES.
X(32) VALUE SPACES.
S9(4) COMP.

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

ngn

g

uyn,
et
A,
||/||.
LEL
ugn,
||T||.
||0||.
"g",

a .

00016000
00017000
00018000

00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000

27 APR 1998 18:43:36 PAGE

ABJ6212 00 WORKING POINTER FOR CICS
ADDED TO WORKING STORAGE

1

5648-B05 V2R1

LINEID

000054
000055
000056
000057
000058
000059
000060
000061
000062
000063
000064
000065
000066
000067
000068
000069
000070
000071
000072
000073
000074
000075
000076
000077
000078
000079
000080
000081
000082
000083
000084
000085
000086
000087
000088
000089
000090
000091
000092
000093
000094
000095
000096
000097
000098
000099
000100
000101
000102
000103
000104
000105
000106

SEQNBR-A 1 B

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

e 2 ..

DFH3270
DFHVAL
DFHALL
DFHERROR
DFHDFT
DFHDFCOL
DFHBLUE
DFHRED
DFHPINK
DFHGREEN
DFHTURQ
DFHYELLO
DFHNEUTR
DFHBASE
DFHDFHI
DFHBLINK
DFHREVRS
DFHUNDLN
DFHMFIL
DFHMENT
DFHMFE
DFHUNNOD
DFHUNIMD
DFHUNNUM
DFHUNINT
DFHUNNON
DFHPROTI
DFHPROTN
DFHMT
DFHMFT
DFHMET
DFHMFET

DFHAID.
DFHNULL
DFHENTER
DFHCLEAR
DFHCLRP
DFHPEN
DFHOPID
DFHMSRE
DFHSTRF
DFHTRIG
DFHPAL
DFHPA2
DFHPA3
DFHPF1
DFHPF2
DFHPF3
DFHPF4
DFHPF5
DFHPF6
DFHPF7

- IBM COBOL CONVERSION AID -
. ... COBOL SOURCE STATEMENTS

n{n.
nAn,

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

DX KKK K XX X

PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC
PIC

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

DX 3K X X X X X X X X X X X X X X X X X

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

IS X",
IS "h".

g muun

IS "5".
Is "sn
Is " 1.
IS "1".
IS "2".
Is "30
Is "an
IS "5".
IS "6
Is "7

SAMPLE RUN

IS
IS
IS
IS

ngn
nyn,
e
o
ngn

7

ABJIVPO3

00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000
00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000

27 APR 1998 18:43:36 PAGE 2
.IDENTFCN MSGID SEV ---DIAGNOSTICS ---

Appendix H. Sample output

223

7

5648-B05 V2Rl - IBM COBOL CONVERSION AID - SAMPLE RUN
LINEID SEQNBR-A 1 B.. ... 2 e .. COBOL SOURCE STATEMENTS ... 6
000107 02 DFHPF8 PIC X VALUE IS "8".

000108 02 DFHPF9 PIC X VALUE IS "g".

000109 02 DFHPF1I0 PIC X VALUE IS ":".

000110 02 DFHPFI1 PIC X VALUE IS "#".

000111 02 DFHPF12 PIC X VALUE IS "e".

000112 02 DFHPF13 PIC X VALUE IS "A".

000113 02 DFHPF14 PIC X VALUE IS "B".

000114 02 DFHPF15 PIC X VALUE IS "C".

000115 02 DFHPF16 PIC X VALUE IS "D".

000116 02 DFHPF17 PIC X VALUE IS "E".

000117 02 DFHPFI8 PIC X VALUE IS "F".

000118 02 DFHPF19 PIC X VALUE IS "G".

000119 02 DFHPF20 PIC X VALUE IS "H".

000120 02 DFHPF21 PIC X VALUE IS "I".

000121 02 DFHPF22 PIC X VALUE IS ">".

000122 02 DFHPF23 PIC X VALUE IS ".".

000123 02 DFHPF24 PIC X VALUE IS "<".

000124

000125

000126 01 PSBNAME PIC X(8).

000127 01 DLIO PIC X(70).

000128 01 SSAL.

000129 02 FILLER PIC X(19) VALUE "ID (NUM =
000130 02 SSAIKEY PIC X(5).

000131 02 FILLER PIC X VALUE ")".

000132 01 SSA2.

000133 02 FILLER PIC X(19) VALUE "CHEQUE (COMPTE =".
000134 02 SSA2KEY PIC X(5).

000135 02 FILLER PIC X VALUE ")".

000136 01 SSA3.

000137 02 FILLER PIC X(19) VALUE "PRET (PRENUM ="
000138 02 SSA3KEY PIC X(6).

000139 02 FILLER PIC X VALUE ")".

000140 *OLD** 01 MAP1I COPY ABJCQIN.

000141 01 MAP1I. COPY ABJCQIN REPLACING ==01 MAP1I.== BY ====-.
000142+ e
000143+ % LICENSED MATERIALS - PROPERTY OF IBM

000144+ *

000145+ % 5785-CCC 5785-ABJ 5648-B05 5686-A07

000146+ *

000147+ % (C) COPYRIGHT IBM CORP. 1982, 1998. ALL RIGHTS RESERVED.
000148+ *

000149+ % US GOVERNMENT USERS RESTRICTED RIGHTS - USE,
000150+ % DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP
000151+ % SCHEDULE CONTRACT WITH IBM CORP.

000152+ *

000153+ e
000154+ 01 MAP1I.

000155+ 02 FILLER PIC X(12).

000156+ 02 TITLEL COMP PIC S9(4).

000157+ 02 TITLEF PICTURE X.

000158+ 02 FILLER REDEFINES TITLEF.

000159+ 03 TITLEA PICTURE X.

224 CCCA

ABJIVPO3 27 APR 1998 18:43:36 PAGE 3

. IDENTFCN

00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000
00131000
00132000
00133000
00134000
00134000
*00001000
*00002000
*00003000
*00004000
*00005000
*00006000
*00007000
*00008000
*00009000
*00010000
*00011000
*00012000
00013000
00014000
00015000
00016000
00017000
00018000

MSGID SEV ---D I AGNOSTICS ---

ABJ6088 00 LANGLEVEL 1 COPY IS CHANGED

5648-B05 V2R1

LINEID

000160+
000161+
000162+
000163+
000164+
000165+
000166+
000167+
000168+
000169+
000170+
000171+
000172+
000173+
000174+
000175+
000176+
000177+
000178+
000179+
000180+
000181+
000182+
000183+
000184+
000185+
000186+
000187+
000188+
000189+
000190+
000191+
000192+
000193+
000194+
000195+
000196+
000197+
000198+
000199+
000200+
000201+
000202+
000203+
000204

000205

000206

000207

000208

000209

000210

000211

000212

- IBM COBOL CONVERSION AID -

SAMPLE RUN

SEQNBR-A 1 B.. ... 2 o COBOL SOURCE STATEMENTS
02 TITLEI PIC X(35).
02 CUSTNOL COMP PIC S9(4).
02 CUSTNOF PICTURE X.
02 FILLER REDEFINES CUSTNOF.
03 CUSTNOA PICTURE X.
02 CUSTNOI PIC X(5).
02 CHECKNOL ~ COMP PIC S9(4).

*OLDx

*

*QLD**

*

*OLD**

*

OLD

*

01

01

01

LINKAGE

01
01

02
02
02
02
02
02

02 CHECKNOF PICTURE X.

02 FILLER REDEFINES CHECKNOF.
03 CHECKNOA PICTURE X.

02 CHECKNOI PIC X(5).

02 LOANNOL COMP PIC S9(4).

02 LOANNOF PICTURE X.

02 FILLER REDEFINES LOANNOF.
03 LOANNOA PICTURE X.

02 LOANNOI PIC X(6).

MAP10 REDEFINES MAP1I.

02 FILLER PIC X(12).

02 FILLER PICTURE X(3).

02 TITLEO PIC X(35).

02 FILLER PICTURE X(3).

02 CUSTNOO PIC X(5).

02 FILLER PICTURE X(3).

02 CHECKNOO PIC X(5).

02 FILLER PICTURE X(3).

02 LOANNOO PIC X(6).

MAP2I.

02 FILLER PIC X(12).

02 ERRNAMEL COMP PIC $9(4).

02 ERRNAMEF PICTURE X.

02 FILLER REDEFINES ERRNAMEF.
03 ERRNAMEA PICTURE X.

02 ERRNAMEI PIC X(8).

02 ERRNOL COMP PIC S9(4).

02 ERRNOF PICTURE X.

02 FILLER REDEFINES ERRNOF.
03 ERRNOA PICTURE X.

02 ERRNOI PIC X(6).

MAP20 REDEFINES MAP2I.

02 FILLER PIC X(12).

02 FILLER PICTURE X(3).

02 ERRNAMEO PIC X(8).

02 FILLER PICTURE X(3).

02 ERRNOO PIC X(6).

SECTION.

DFHBLLDS SYNCHRONIZED.

DFHBLLDS SYNCHRONIZED.
BLLCBAR PICTURE XXXX.
BLLCBAR PICTURE XXXX.
CSACBAR PICTURE XXXX.
CSACBAR PICTURE XXXX.

CSAOPBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
CSAOPBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

7

ABJIVPO3

27 APR 1998 18:43:36 PAGE 4

.IDENTFCN MSGID SEV ---DIAGNOSTICS ---

00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00135000
00136000
00136000
00137000
00137000
00138000
00138000
00139000
00139000

ABJ6203 00 BLL'S ARE REMOVED

Appendix H. Sample output

225

5648-B05 V2R1

LINEID

000213
000214
000215
000216
000217
000218
000219
000220
000221
000222
000223
000224
000225
000226
000227
000228
000229
000230
000231
000232
000233
000234
000235
000236
000237
000238
000239
000240
000241
000242
000243
000244
000245
000246
000247
000248
000249
000250
000251
000252
000253
000254
000255
000256
000257
000258
000259
000260
000261
000262
000263
000264
000265

- IBM COBOL CONVERSION AID -

SAMPLE RUN

SEQNBR-A' 1 B.. ... 2 o0 COBOL SOURCE STATEMENTS ... 6

*0LD** 02 TCACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.
* 02 TCACBAR PICTURE S9(8) USAGE IS COMPUTATIONAL.

*0LD** 02

* 02
QLD#= 02
* 02
*QLD** 02
* 02
*0LD** 02
* 02
QLD== 02
* 02

PCB-LIST-PTR PIC S9(8) COMP.
PCB-LIST-PTR PIC S9(8) COMP.

PCB1-PTR PIC S9(8) COMP.
PCB1-PTR PIC S9(8) COMP.

CINQOUT-PTR PIC S9(8) COMP.
CINQOUT-PTR PIC S9(8) COMP.
ERRORMP-PTR PIC S9(8) COMP.
ERRORMP-PTR PIC S9(8) COMP.
CIDLOUT-PTR PIC S9(8) COMP.
CIDLOUT-PTR PIC S9(8) COMP.

01 DFHCSADS SYNCHRONIZED.
02 CSAFILLER PICTURE X(512).

02 FILLERL REDEFINES CSAFILLER.

03 FILLER.
FILLER PICTURE X(76).
CSACDTA PICTURE S9(8) USAGE IS COMPUTATIONAL.

CSATODP PICTURE S9(7) USAGE IS COMPUTATIONAL-3.
FILLER PICTURE X(12).
CSACTODB PICTURE S9(8) USAGE IS COMPUTATIONAL.
FILLER PICTURE X(24).
CSAJYDP PICTURE 9(7) USAGE IS COMPUTATIONAL-3.
FILLER PICTURE X(64).
03 FILLER.
04 FILLER PICTURE X(8).
04 CSAOPFLA PICTURE S9(8) USAGE IS COMPUTATIONAL.
04 FILLER PICTURE X(20).
04 FILLER.

03
03
03
03
03
03

226 CCCA

04

05
05
05
05
05
05
05
05
05
05
05
05
05
05
05

CSAKCNAC PICTURE
CSASCNAC PICTURE
CSAPCNAC PICTURE
CSAICNAC PICTURE
CSADCNAC PICTURE
CSATCNAC PICTURE
CSAFCNAC PICTURE
CSATDNAC PICTURE
CSATSNAC PICTURE
CSASANAC PICTURE
CSATRNAC PICTURE
CSAPINAC PICTURE

XXXX.

XXXX.

FILLER PICTURE X(4).

CSASPNAC PICTURE
CSATCRWE PICTURE

XXXX.
XXXX.

FILLER PICTURE X(215).
CSAUTAL PICTURE S9(5) USAGE IS COMPUTATIONAL-3.
CSAUTA2 PICTURE S9(5) USAGE IS COMPUTATIONAL-3.
CSAUTA3 PICTURE S9(5) USAGE IS COMPUTATIONAL-3.
CSAUTA4 PICTURE S9(5) USAGE IS COMPUTATIONAL-3.

FILLER PICTURE X(1).
* ABOVE FILLER ADDED BY APAR PN26174

7

ABJIVPO3 27 APR 1998 18:43:36 PAGE 5
.IDENTFCN MSGID SEV ---D I AGNOSTICS ---

00140000
00140000
00141000
00141000
00142000
00142000
00143000
00143000
00144000
00144000
00145000
00145000
00146000
00147000
00148000
00149000
00150000
00151000
00152000
00153000
00154000
00155000
00156000
00157000
00158000
00159000
00160000
00161000
00162000
00163000
00164000
00165000
00166000
00167000
00168000
00169000
00170000
00171000
00172000
00173000
00174000
00175000
00176000
00177000
00178000
00179000
00180000
00181000
00182000
00183000
00184000
00185000
00186000

5648-B05 V2R1 - I

LINEID

000266
000267
000268
000269
000270
000271
000272
000273
000274
000275
000276
000277
000278
000279
000280
000281
000282
000283
000284
000285
000286
000287
000288
000289
000290
000291
000292
000293
000294
000295
000296
000297
000298
000299
000300
000301
000302
000303
000304
000305
000306
000307
000308
000309
000310
000311
000312
000313
000314
000315
000316
000317
000318

SEQNBR-A 1

01

01
02
02
02
02
02
02
02
02
02
02
02
02
02
02

01
02

BM COBOL CONVERSION AID - SAMPLE RUN

B.. ... 2 o0 COBOL SOURCE STATEMENTS ... 6

DFHTCADS PICTURE X(64) SYNCHRONIZED.
CSAOPFL REDEFINES DFHTCADS SYNCHRONIZED.
CSAATP PICTURE XXXX.
CSAATTCH PICTURE XXXX.
CSADLI PICTURE XXXX.
CSABFNAC PICTURE XXXX.
CSABMS PICTURE XXXX.
CSATMSVT PICTURE XXXX.
CSAJCNAL PICTURE XXXX.
CSAJCNA2 PICTURE XXXX.
CSASRNAC PICTURE XXXX.
CSASRTBA PICTURE XXXX.
CSAKPNAC PICTURE XXXX.
CSAATMSP PICTURE XXXX.
CSAXLTBA PICTURE XXXX.
CSAJCTBA PICTURE XXXX.
DFHTCA SYNCHRONIZED.
FILLER.
03 FILLER PICTURE X(8).
03 TCAFCAAA PICTURE S9(8) USAGE IS COMPUTATIONAL.
03 FILLER REDEFINES TCAFCAAA.
04 TCAFCAA1 PICTURE X.
04 FILLER PICTURE X(3).
03 FILLER.
04 FILLER PICTURE X(8).
04 TCATCEA PICTURE S9(8) USAGE IS COMPUTATIONAL.
04 FILLER REDEFINES TCATCEA.
05 TCATCQA PICTURE S9(8) USAGE IS COMPUTATIONAL.
04 TCATCTR1 PICTURE 9(4) USAGE IS COMPUTATIONAL.
04 FILLER REDEFINES TCATCTRIL.
05 TCATCEI PICTURE X.
05 TCATCTR PICTURE X.
04 FILLER REDEFINES TCATCTRIL.
05 TCATCDC PICTURE X.
05 FILLER PICTURE X.
04 TCATCDP PICTURE X.
04 FILLER PICTURE X(5).
04 TCATCRS PICTURE X(60).
04 FILLER REDEFINES TCATCRS.

05 TCATCDP1 PICTURE 9(4) USAGE IS COMPUTATIONAL.

05 FILLER PICTURE X(58).
03 FILLER.

04 TCASCCA.

05 TCASCSA PICTURE S9(8) USAGE IS COMPUTATIONAL.
04 FILLER REDEFINES TCASCCA.

05 TCAFCTL PICTURE S9(8) USAGE IS COMPUTATIONAL.
04 FILLER REDEFINES TCASCCA.

05 TCASCTR PICTURE X.

05 TCASCIB PICTURE X.

05 TCASCNB PICTURE 9(4) USAGE IS COMPUTATIONAL.
04 FILLER REDEFINES TCASCCA.

05 TCASCRI PICTURE 9(4) USAGE IS COMPUTATIONAL.

05 FILLER PICTURE X(2).

7

ABJIVPO3

00187000
00188000
00189000
00190000
00191000
00192000
00193000
00194000
00195000
00196000
00197000
00198000
00199000
00200000
00201000
00202000
00203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
00212000
00213000
00214000
00215000
00216000
00217000
00218000
00219000
00220000
00221000
00222000
00223000
00224000
00225000
00226000
00227000
00228000
00229000
00230000
00231000
00232000
00233000
00234000
00235000
00236000
00237000
00238000
00239000

27 APR 1998 18:43:36 PAGE 6
.IDENTFCN MSGID SEV ---DIAGNOSTICS ---

Appendix H. Sample output

227

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN

LINEID ~ SEQNBR-A 1 B.. ... 2 o0 COBOL SOURCE STATEMENTS ... 6
000319 04 TCAFCTL1 PICTURE S9(8) USAGE IS COMPUTATIONAL.
000320 04 FILLER PICTURE X(28).

000321 03 FILLER.

000322 04 TCACCCA.

000323 05 TCACCCA1 PICTURE X(32).

000324 05 TCACCRS1 PICTURE X(56).

000325 05 TCACCSV1 PICTURE S9(4) USAGE IS COMPUTATIONAL.
000326 05 TCACCRSV PICTURE XX.

000327 05 TCACCSV2 PICTURE XXXX.

000328 04 FILLER REDEFINES TCACCCA.

000329 05 TCATPAPR PICTURE X.

000330 88 TCATPVAL VALUE "6".

000331 88 TCATPNVL ~ VALUE "7".

000332 88 TCATPLNR ~ VALUE " ".

000333 05 FILLER PICTURE X.

000334 05 TCATPOS PICTURE S9(4) USAGE IS COMPUTATIONAL.
000335 05 TCATPCS PICTURE S9(4) USAGE IS COMPUTATIONAL.
000336 05 TCATPOC PICTURE S9(4) USAGE IS COMPUTATIONAL.
000337 05 TCATPLDM PICTURE XX.

000338 05 TCATPCON PIC S9(4) USAGE IS COMPUTATIONAL.
000339 05 TCATPPNM PICTURE X(8).

000340 05 FILLER PICTURE X(76).

000341 04 FILLER REDEFINES TCACCCA.

000342 05 FILLER PICTURE X(24).

000343 05 TCAKCTI PICTURE X(4).

000344 05 TCAKCFA PICTURE S9(8) USAGE IS COMPUTATIONAL.
000345 05 FILLER PICTURE X(64).

000346 04 FILLER REDEFINES TCACCCA.

000347 05 TCAICDA PICTURE S9(8) USAGE IS COMPUTATIONAL.
000348 05 FILLER REDEFINES TCAICDA.

000349 06 TCAICTR PICTURE 9(4) USAGE IS COMPUTATIONAL.
000350 06 FILLER PICTURE X(2).

000351 05 FILLER REDEFINES TCAICDA.

000352 06 TCAICRC PICTURE X.

000353 06 FILLER PICTURE X(3).

000354 05 TCAICQID.

000355 07 TCAICQPX PICTURE XX.

000356 07 FILLER PICTURE X(6).

000357 05 TCAICRT PICTURE S9(7) USAGE IS COMPUTATIONAL-3.
000358 05 TCAICTI PICTURE X(4).

000359 05 TCAICTID PICTURE X(4).

000360 05 FILLER PICTURE X(4).

000361 05 TCAFCTR1 PICTURE 9(4) USAGE IS COMPUTATIONAL.
000362 05 FILLER PICTURE X(66).

000363 04 FILLER REDEFINES TCACCCA.

000364 05 TCAPCLA PICTURE S9(8) USAGE IS COMPUTATIONAL.
000365 05 FILLER REDEFINES TCAPCLA.

000366 06 TCAPCTR PICTURE 9(4) USAGE IS COMPUTATIONAL.
000367 06 FILLER PICTURE X(2).

000368 05 FILLER REDEFINES TCAPCLA.

000369 06 TCAPCRC PICTURE X.

000370 88 PCPGMIDER VALUE " ".

000371 88 PCNORESP VALUE " ".

228 CCCA

7

ABJIVPO3 27 APR 1998 18:43:36 PAGE 7
.IDENTFCN MSGID SEV ---D I AGNOSTICS ---

00240000
00241000
00242000
00243000
00244000
00245000
00246000
00247000
00248000
00249000
00250000
00251000
00252000
00253000
00254000
00255000
00256000
00257000
00258000
00259000
00260000
00261000
00262000
00263000
00264000
00265000
00266000
00267000
00268000
00269000
00270000
00271000
00272000
00273000
00274000
00275000
00276000
00277000
00278000
00279000
00280000
00281000
00282000
00283000
00284000
00285000
00286000
00287000
00288000
00289000
00290000
00291000
00292000

5648-B05 V2R1

LINEID

000372
000373
000374
000375
000376
000377
000378
000379
000380
000381
000382
000383
000384
000385
000386
000387
000388
000389
000390
000391
000392
000393
000394
000395
000396
000397
000398
000399
000400
000401
000402
000403
000404
000405
000406
000407
000408
000409
000410
000411
000412
000413
000414
000415
000416
000417
000418
000419
000420
000421
000422
000423
000424

SEQNBR-A 1 B

2

88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88
88

- IBM COBOL CONVERSION AID -

SAMPLE RUN
...... COBOL SOURCE STATEMENTS ... 6 7
ICNORESP VALUE " "
ICENDDATA VALUE " "
ICIOERROR VALUE " "
ICTRNIDER ~ VALUE " "
ICTRMIDER ~ VALUE " "
ICTSINVLD ~ VALUE " "
ICEXPIRD VALUE " ".
ICNOTFND VALUE "§".
ICINVREQ VALUE "§"
TSNORESP VALUE " "
TSENERROR ~ VALUE " *
TSIDERROR ~ VALUE " "
TSIOERROR VALUE " "
TSINVREQ ~ VALUE " *
TDNORESP ~ VALUE " "
TDQUEZERO ~ VALUE " "
TDIDERROR ~ VALUE " *
TDIOERROR VALUE " "
TDNOTOPEN ~ VALUE " *
TDNOSPACE ~ VALUE " "
FCNORESP VALUE " "
FCDSIDER ~ VALUE " "
FCSEGIDER VALUE " "
FCINVREQ ~ VALUE " "
FCDUPDS VALUE " "
FCNOTOPEN ~ VALUE " "
FCENDFILE VALUE " "
FCIOERROR VALUE "g"
FCNOTFND VALUE "a"
FCDUPREC ~ VALUE "b".
FCNOSPACE ~ VALUE "c"
FCDUPKEY VALUE "d".
FCILLOGIC VALUE " "

06 TCAPCFLA PICTURE X.

06 TCAPCARO PICTURE X.

06 FILLER PICTURE X.
05 TCAPCPI PICTURE X(8).
05 FILLER REDEFINES TCAPCPI.

06 TCAPCERA PICTURE S9(8) USAGE IS COMPUTATIONAL.

06 FILLER PICTURE X(4).

05 TCAPCAC PICTURE XXXX.

05 TCAPCPSW PICTURE X(8).
05 TCAPCINT PICTURE X(8).

05 FILLER PICTURE X(64).
04 FILLER REDEFINES TCACCCA.
TCADCTR PICTURE 9(4) USAGE IS COMPUTATIONAL.
TCADCNB PICTURE 9(4) USAGE IS COMPUTATIONAL.
TCADCSA PICTURE S9(8) USAGE IS COMPUTATIONAL.
FILLER PICTURE XXXX.
TCADCDC PICTURE XXXX.
FILLER PICTURE X(80).
04 FILLER REDEFINES TCACCCA.

05 TCAFCAA PICTURE S9(8) USAGE IS COMPUTATIONAL.

05
05
05
05
05
05

ABJIVPO3

00293000
00294000
00295000
00296000
00297000
00298000
00299000
00300000
00301000
00302000
00303000
00304000
00305000
00306000
00307000
00308000
00309000
00310000
00311000
00312000
00313000
00314000
00315000
00316000
00317000
00318000
00319000
00320000
00321000
00322000
00323000
00324000
00325000
00326000
00327000
00328000
00329000
00330000
00331000
00332000
00333000
00334000
00335000
00336000
00337000
00338000
00339000
00340000
00341000
00342000
00343000
00344000
00345000

27 APR 1998 18:43:36 PAGE 8

Appendix H. Sample output

.IDENTFCN MSGID SEV ---DIAGNOSTICS ---

229

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN

LINEID SEQNBR-A 1 B

000425
000426
000427
000428
000429
000430
000431
000432
000433
000434
000435
000436
000437
000438
000439
000440
000441
000442
000443
000444
000445
000446
000447
000448
000449
000450
000451
000452
000453
000454
000455
000456
000457
000458
000459
000460
000461
000462
000463
000464
000465
000466
000467
000468
000469
000470
000471
000472
000473
000474
000475
000476
000477

230 ccca

..... 2 COBOL SOURCE STATEMENTS ... 6 7

05 FILLER REDEFINES TCAFCAA.
06 TCAFCTR PICTURE 9(4) USAGE IS COMPUTATIONAL.
06 FILLER PICTURE X(2).
05 FILLER REDEFINES TCAFCAA.
06 TCAFCRC PICTURE X.
06 FILLER PICTURE X(3).
05 TCAFCDI PICTURE X(8).
05 TCAFCURL PICTURE 9(4) USAGE IS COMPUTATIONAL.
05 FILLER REDEFINES TCAFCURL.
06 TCAFCNRD PICTURE 9(4) USAGE IS COMPUTATIONAL.
05 FILLER PICTURE X(6).
05 FILLER PICTURE X(8).
05 TCAFCRI PICTURE S9(8) USAGE IS COMPUTATIONAL.
05 FILLER PICTURE X(64).
04 FILLER REDEFINES TCACCCA.
05 TCATDAA PICTURE S9(8) USAGE IS COMPUTATIONAL.
05 FILLER REDEFINES TCATDAA.
06 TCATDRC PICTURE X.
06 FILLER PICTURE X(3).
05 FILLER REDEFINES TCATDAA.
06 TCATDTR PICTURE 9(4) USAGE IS COMPUTATIONAL.
06 FILLER PICTURE X(2).
05 TCATDDI PICTURE XXXX.
05 FILLER PICTURE X(88).
04 FILLER REDEFINES TCACCCA.
05 TCATSDA PICTURE S9(8) USAGE IS COMPUTATIONAL.
05 FILLER REDEFINES TCATSDA.
06 TCATSRC PICTURE X.
06 FILLER PICTURE X(3).
05 FILLER REDEFINES TCATSDA.
06 TCATSTR PICTURE 9(4) USAGE IS COMPUTATIONAL.
06 FILLER PICTURE X(2).
05 TCATSDI PICTURE X(8).
05 TCATSRN PICTURE 9(4) USAGE IS COMPUTATIONAL.
05 FILLER PICTURE X(2).
05 TCATSTR2 PICTURE 9(4) USAGE IS COMPUTATIONAL.
05 FILLER PICTURE X(78).
04 FILLER REDEFINES TCACCCA.
05 TCAMSTR1 PICTURE X(8).
05 FILLER REDEFINES TCAMSTRI.
06 FILLER PICTURE X.
06 TCAMSTR2 PICTURE
06 TCAMSTR3 PICTURE
06 TCAMSTR4 PICTURE
06 TCAMSTR5 PICTURE
06 TCAMSTR6 PICTURE
06 TCAMSTR7 PICTURE
06 TCAMSTR8 PICTURE X.
05 FILLER REDEFINES TCAMSTRI.
06 TCAMSRC1 PICTURE X.
06 TCAMSRC2 PICTURE X.
06 TCAMSRC3 PICTURE X.
06 TCAMSRI1 PICTURE X.

>< > <X XX X X<

ABJIVPO3

00346000
00347000
00348000
00349000
00350000
00351000
00352000
00353000
00354000
00355000
00356000
00357000
00358000
00359000
00360000
00361000
00362000
00363000
00364000
00365000
00366000
00367000
00368000
00369000
00370000
00371000
00372000
00373000
00374000
00375000
00376000
00377000
00378000
00379000
00380000
00381000
00382000
00383000
00384000
00385000
00386000
00387000
00388000
00389000
00390000
00391000
00392000
00393000
00394000
00395000
00396000
00397000
00398000

27 APR 1998 18:43:36 PAGE 9

.IDENTFCN MSGID SEV ---D I AGNOSTICS ---

5648-B05 V2R1

LINEID

000478
000479
000480
000481
000482
000483
000484
000485
000486
000487
000488
000489
000490
000491
000492
000493
000494
000495
000496
000497
000498
000499
000500
000501
000502
000503
000504
000505
000506
000507
000508
000509
000510
000511
000512
000513
000514
000515
000516
000517
000518
000519
000520
000521
000522
000523
000524
000525
000526
000527
000528
000529
000530

SEQNBR-A 1 B

- IBM COBOL CONVERSION AID - SAMPLE RUN

e 2 il COBOL SOURCE STATEMENTS ... 6

06 TCAMSPGN PICTURE 9(4) USAGE IS COMPUTATIONAL.
06 TCAMSOCN PICTURE 9(4) USAGE IS COMPUTATIONAL.
05 FILLER REDEFINES TCAMSTRL.
06 FILLER PICTURE XX.
06 TCAMSRC3H PICTURE 9(4) USAGE IS COMPUTATIONAL.
06 FILLER PICTURE X(4).
05 FILLER REDEFINES TCAMSTRI.
06 TCAMSRC PICTURE XXX.
06 FILLER PICTURE X(5).
05 TCAMSIOA PICTURE S9(8) USAGE IS COMPUTATIONAL.
05 FILLER REDEFINES TCAMSIOA.
06 TCAMSTA PICTURE S9(8) USAGE IS COMPUTATIONAL.
05 TCAMSFSC PICTURE XXXX.
05 FILLER REDEFINES TCAMSFSC.
06 TCABMSFB PICTURE 9(4) USAGE IS COMPUTATIONAL.
06 FILLER REDEFINES TCABMSFB.
07 TCABMSWC PICTURE X.
07 FILLER PICTURE X.
06 FILLER REDEFINES TCABMSFB.
07 TCAMSWCC PICTURE X.
07 TCAMSJ PICTURE X.
06 TCABMSCP PICTURE S9(4) USAGE IS COMPUTATIONAL.
05 TCABMSMN PICTURE X(8).
05 FILLER REDEFINES TCABMSMN.
06 TCABMSMA PICTURE S9(8) USAGE IS COMPUTATIONAL.
06 FILLER PICTURE X(4).
05 FILLER REDEFINES TCABMSMN.
06 TCAMSHDR PICTURE S9(8) USAGE IS COMPUTATIONAL.
06 FILLER PICTURE X(4).
05 FILLER REDEFINES TCABMSMN.
06 TCAMSRLA PICTURE S9(8) USAGE IS COMPUTATIONAL.

06 TCAMSRTI PICTURE S9(7) USAGE IS COMPUTATIONAL-3.

06 FILLER REDEFINES TCAMSRTI.

07 TCAMSTRL PICTURE S9(8) USAGE IS COMPUTATIONAL.

05 TCAMSMSN PICTURE X(8).

05 FILLER REDEFINES TCAMSMSN.
06 TCAMSMSA PICTURE S9(8) USAGE IS COMPUTATIONAL.
06 FILLER PICTURE X(4).

05 FILLER REDEFINES TCAMSMSN.
06 TCAMSTI PICTURE X(4).

06 FILLER PICTURE X.
06 TCAMSOC PICTURE XXX.

05 TCAMSLDM PICTURE XX.

05 TCAMSLDC PICTURE X.

05 TCAMSRID PICTURE XX.

05 FILLER PICTURE XXX.

05 TCAMSFMP PICTURE X(8).

05 FILLER PICTURE X(48).

04 FILLER REDEFINES TCACCCA.

05 TCASPTR PICTURE 9(4) USAGE IS COMPUTATIONAL.
05 FILLER PICTURE X(94).

04 FILLER REDEFINES TCACCCA.

05 TCADLIO PICTURE S9(8) USAGE IS COMPUTATIONAL.

ABJIVPO3

00399000
00400000
00401000
00402000
00403000
00404000
00405000
00406000
00407000
00408000
00409000
00410000
00411000
00412000
00413000
00414000
00415000
00416000
00417000
00418000
00419000
00420000
00421000
00422000
00423000
00424000
00425000
00426000
00427000
00428000
00429000
00430000
00431000
00432000
00433000
00434000
00435000
00436000
00437000
00438000
00439000
00440000
00441000
00442000
00443000
00444000
00445000
00446000
00447000
00448000
00449000
00450000
00451000

27 APR 1998 18:43:36 PAGE 10

Appendix H. Sample output

.IDENTFCN MSGID SEV ---DIAGNOSTICS ---

231

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN ABJIVPO3 27 APR 1998 18:43:36 PAGE 11

LINEID ~ SEQNBR-A 1 B.. ... 2 o0 COBOL SOURCE STATEMENTS ... 6 7 .IDENTFCN MSGID SEV ---DIAGNOSTICS ---
000531 05 FILLER REDEFINES TCADLIO. 00452000
000532 06 FILLER PICTURE X. 00453000
000533 06 TCADLTR PICTURE X. 00454000
000534 88 FCDLINA VALUE "y". 00455000
000535 88 FCPSBSCH VALUE " ". 00456000
000536 88 FCPSBNF VALUE " ". 00457000
000537 88 FCTASKNA VALUE " ". 00458000
000538 88 FCPSBNA VALUE " ". 00459000
000539 88 FCLANGCON VALUE " ". 00460000
000540 88 FCPSBFAIL VALUE " ". 00461000
000541 88 FCFUNCNS VALUE " ". 00462000
000542 88 FCTERMNS VALUE " ". 00463000
000543 06 FILLER PICTURE X(2). 00464000
000544 05 TCADLPCB PICTURE S9(8) USAGE IS COMPUTATIONAL. 00465000
000545 05 TCADLPSB PICTURE X(8). 00466000
000546 05 TCADLSSA PICTURE S9(8) USAGE IS COMPUTATIONAL. 00467000
000547 05 TCADLPAR PICTURE S9(8) USAGE IS COMPUTATIONAL. 00468000
000548 05 TCADLECB PICTURE S9(8) USAGE IS COMPUTATIONAL. 00469000
000549 05 FILLER REDEFINES TCADLECB. 00470000
000550 06 TCADLLAN PICTURE X(4). 00471000
000551 05 TCADLFUN PICTURE X(4). 00472000
000552 05 FILLER PICTURE X(64). 00473000
000553 04 FILLER. 00474000
000554 05 TCATRF1 PICTURE S9(8) USAGE IS COMPUTATIONAL. 00475000
000555 05 FILLER REDEFINES TCATRFI. 00476000
000556 06 TCATRFIH PICTURE 9(4) USAGE IS COMPUTATIONAL. 00477000
000557 06 FILLER PICTURE X(2). 00478000
000558 05 FILLER REDEFINES TCATRFI. 00479000
000559 06 TCATRF1IF PICTURE S9(8) USAGE IS COMPUTATIONAL. 00480000
000560 05 FILLER REDEFINES TCATRFI. 00481000
000561 06 TCATRF1C PICTURE X(4). 00482000
000562 05 FILLER REDEFINES TCATRFI. 00483000
000563 06 TCATRF1P PICTURE 9(7) USAGE IS COMPUTATIONAL-3. 00484000
000564 05 FILLER REDEFINES TCATRFI. 00485000
000565 06 TCATRFIA PICTURE X. 00486000
000566 06 FILLER PICTURE X(3). 00487000
000567 05 TCATRF2 PICTURE S9(8) USAGE IS COMPUTATIONAL. 00488000
000568 05 FILLER REDEFINES TCATRF2. 00489000
000569 06 TCATRF2H PICTURE 9(4) USAGE IS COMPUTATIONAL. 00490000
000570 06 FILLER PICTURE X(2). 00491000
000571 05 FILLER REDEFINES TCATRF2. 00492000
000572 06 TCATRF2F PICTURE S9(8) USAGE IS COMPUTATIONAL. 00493000
000573 05 FILLER REDEFINES TCATRF2. 00494000
000574 06 TCATRF2C PICTURE X(4). 00495000
000575 05 FILLER REDEFINES TCATRF2. 00496000
000576 06 TCATRF2P PICTURE 9(7) USAGE IS COMPUTATIONAL-3. 00497000
000577 05 FILLER REDEFINES TCATRF2. 00498000
000578 06 TCATRF2A PICTURE X. 00499000
000579 06 FILLER PICTURE X(3). 00500000
000580 05 TCATRRI PICTURE 9(4) USAGE IS COMPUTATIONAL. 00501000
000581 05 TCATRRI1 PICTURE 9(4) USAGE IS COMPUTATIONAL. 00502000
000582 05 FILLER PICTURE X(4). 00503000
000583 05 TCAJCAAD PICTURE S9(8) USAGE IS COMPUTATIONAL. 00504000

232 CCCA

5648-B05 V2R1

LINEID

000584
000585
000586
000587
000588
000589
000590
000591
000592
000593
000594
000595
000596
000597
000598
000599
000600
000601
000602+
000603+
000604+
000605+
000606+
000607+
000608+
000609+
000610+
000611+
000612+
000613+
000614+
000615+
000616+
000617+
000618+
000619+
000620+
000621+
000622+
000623+
000624+
000625+
000626+
000627+
000628+
000629+
000630+
000631+
000632+
000633+
000634+
000635+
000636+

SEQNBR-A 1 B.. ... 2 o0 COBOL SOURCE STATEMENTS ... 6

*QLD**

EE I

01

01
01

IBM COBOL CONVERSION AID - SAMPLE RUN

05 TCAATAC PICTURE S9(8) USAGE IS COMPUTATIONAL.

03 FILLER.

04 TCACSPE PICTURE XXXX.

04 TCANXTID PICTURE X(4).
PCB-ADDR.
02 PCBL-ADDR PIC S9(8) COMP.
PCBI.
02 DBD-NAME PIC X(8).
02 SEG-LEVEL PIC XX.
02 STATUS-CODE PIC XX.
02 PROC-OPTIONS PIC X(4).
02 RESERVE-DLI PIC S9(5) COMP.
02 SEG-NAME-FB PIC X(8).
02 LENGTH-FB-KEY PIC S9(5) COMP.
02 NUMB-SENS-SEGS PIC S9(5) COMP.
02 KEY-FB-AREA PIC X(30).
MAPLLI COPY ABJCQOUT.

MAP11I. COPY ABJCQOUT REPLACING ==01 MAP11I.== BY ====,

7

LICENSED MATERIALS - PROPERTY OF IBM

5785-CCC 5785-ABJ 5648-B05 5686-A07

(C) COPYRIGHT IBM CORP. 1982, 1998. ALL RIGHTS RESERVED.
US GOVERNMENT USERS RESTRICTED RIGHTS - USE,

DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP
SCHEDULE CONTRACT WITH IBM CORP.

01
01

01

01

01

MAPL1I.
02 FILLER PIC X(96).
MAP110 REDEFINES MAP11I.
02 FILLER PIC X(96).
MAP211 REDEFINES MAP11I.
02 FILLER PIC X(12).
02 SEGNAMEL ~ COMP PIC S9(4).
02 SEGNAMEF PICTURE X.
02 FILLER REDEFINES SEGNAMEF.
03 SEGNAMEA PICTURE X.
02 SEGNAMEI PIC X(8).
02 SEGCONTL ~ COMP PIC S9(4).
02 SEGCONTF PICTURE X.
02 FILLER REDEFINES SEGCONTF.
03 SEGCONTA PICTURE X.
02 SEGCONTI PIC X(70).
MAP210 REDEFINES MAP21I.
02 FILLER PIC X(12).
02 FILLER PICTURE X(3).
02 SEGNAMEO PIC X(8).
02 FILLER PICTURE X(3).
02 SEGCONTO PIC X(70).
MAP31I REDEFINES MAP11I.

ABJIVPO3 27 APR 1998 18:43:36 PAGE
.IDENTFCN MSGID SEV ---DIAGNOSTICS ---

00505000
00506000
00507000
00508000
00509000
00510000
00511000
00512000
00513000
00514000
00515000
00516000
00517000
00518000
00519000
00520000
00521000
00521000
*00001000
*00002000
*00003000
*00004000
*00005000
*00006000
*00007000
*00008000
*00009000
*00010000
*00011000
*00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000

ABJ6088 00 LANGLEVEL 1 COPY IS CHANGED

Appendix H. Sample output

12

233

7

5648-B05 V2Rl - IBM COBOL CONVERSION AID - SAMPLE RUN

LINEID SEQNBR-A 1 B.. ... 2 0. COBOL SOURCE STATEMENTS ... 6
000637+ 02 FILLER PIC X(12).

000638+ 01 MAP310 REDEFINES MAP31I.

000639+ 02 FILLER PIC X(12).

000640+ 01 MAPALI REDEFINES MAP11I.

000641+ 02 FILLER PIC X(12).

000642+ 01 MAP410 REDEFINES MAP41I.

000643+ 02 FILLER PIC X(12).

000644+ 01 MAP51I REDEFINES MAP11I.

000645+ 02 FILLER PIC X(12).

000646+ 01 MAP510 REDEFINES MAP51I.

000647+ 02 FILLER PIC X(12).

000648 *OLD** 01 MAP12I COPY ABJERRMP.

000649 01 MAP12I. COPY ABJERRMP REPLACING ==01 MAP12I.== BY ====,
000650+ K o e e e e
000651+ % LICENSED MATERIALS - PROPERTY OF IBM

000652+ *

000653+ % 5785-CCC 5785-ABJ 5648-B05 5686-A07

000654+ *

000655+ % (C) COPYRIGHT IBM CORP. 1982, 1998. ALL RIGHTS RESERVED.
000656+ *

000657+ % US GOVERNMENT USERS RESTRICTED RIGHTS - USE,

000658+ % DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP

000659+ % SCHEDULE CONTRACT WITH IBM CORP.

000660+ *

000661+ Em o
000662+ 01 MAPI2I.

000663+ 02 FILLER PIC X(12).

000664+ 02 ERRMSGL COMP PIC $9(4).

000665+ 02 ERRMSGF PICTURE X.

000666+ 02 FILLER REDEFINES ERRMSGF.

000667+ 03 ERRMSGA PICTURE X.

000668+ 02 ERRMSGI PIC X(70).

000669+ 01 MAP120 REDEFINES MAP12I.

000670+ 02 FILLER PIC X(12).

000671+ 02 FILLER PICTURE X(3).

000672+ 02 ERRMSGO PIC X(70).

000673 *OLD** 01 MAP13I COPY ABJCIOUT.

000674 01 MAPL3I. COPY ABJCIOUT REPLACING ==01 MAP13I.== BY ====,
000675+ K e mmmm e mmmmmmmm e mmmmm e mmmmm e
000676+ % LICENSED MATERIALS - PROPERTY OF IBM

000677+ *

000678+ % 5785-CCC 5785-ABJ 5648-B05 5686-A07

000679+ *

000680+ % (C) COPYRIGHT IBM CORP. 1982, 1998. ALL RIGHTS RESERVED.
000681+ *

000682+ % US GOVERNMENT USERS RESTRICTED RIGHTS - USE,

000683+ % DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP

000684+ % SCHEDULE CONTRACT WITH IBM CORP.

000685+ *

000686+ K o e
000687+ 01 MAPI13I.

000688+ 02 FILLER PIC X(12).

000689+ 01 MAP130 REDEFINES MAP13I.

234 CCCA

ABJIVPO3 27 APR 1998 18:43:36 PAGE 13

. IDENTFCN

00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00522000
00522000
*00001000
*00002000
*00003000
*00004000
*00005000
*00006000
*00007000
*00008000
*00009000
*00010000
*00011000
*00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00523000
00523000
*00001000
*00002000
*00003000
*00004000
*00005000
*00006000
*00007000
*00008000
*00009000
*00010000
*00011000
*00012000
00013000
00014000
00015000

MSGID SEV ---D I AGNOSTICS ---

ABJ6088 00 LANGLEVEL 1 COPY IS CHANGED

ABJ6088 00 LANGLEVEL 1 COPY IS CHANGED

5648-B05 V2R1

LINEID

000690+
000691
000692
000693
000694

000695
000696
000697
000698
000699
000700
000701
000702
000703
000704
000705
000706

000707
000708
000709

000710
000711
000712
000713
000714
000715
000716
000717
000718
000719
000720
000721
000722
000723
000724
000725
000726
000727
000728
000729
000730
000731
000732
000733

SEQNBR-

*QLD**

*QLD**

*QLD**

- IBM COBOL CONVERSION AID - SAMPLE RUN

AlB.. ... 2 o0 COBOL SOURCE STATEMENTS ... 6

02 FILLER PIC X(12).
PROCEDURE DIVISION.
MOVE CSACDTA TO TCACBAR.
MOVE CSACDTA TO LCP-WS-ADDR-COMP
SET ADDRESS OF DFHTCA TO LCP-WS-ADDR-PNTR.

EXEC CICS HANDLE CONDITION ERROR(ERRORS) MAPFAIL(CIDL)
OVERFLOW (PAGE-OVERFLOW) END-EXEC.
EXEC CICS RECEIVE MAP("MAP1") MAPSET("CINQIN") END-EXEC.
IF CUSTNOI = SPACES OR CUSTNOL = +0000
MOVE "CUSTOMER" TO ERRNAMEQ
MOVE SPACES TO ERRNOO GO TO ERR-MSG.
MOVE "PSBCLIG" TO PSBNAME.
CALL "CBLTDLI" USING PCB PSBNAME.
IF TCAFCRC NOT EQUAL TO " " GO TO INTERFACE-ERROR.
MOVE TCADLPCB TO PCB-LIST-PTR.
MOVE TCADLPCB TO LCP-WS-ADDR-COMP
SET ADDRESS OF PCB-ADDR TO LCP-WS-ADDR-PNTR.

MOVE PCB1-ADDR TO PCB1-PTR.
MOVE PCB1-ADDR TO LCP-WS-ADDR-COMP
SET ADDRESS OF PCB1 TO LCP-WS-ADDR-PNTR.

MOVE CUSTNOI TO SSAILKEY.

MOVE CHECKNOI TO SSA2KEY.

MOVE LOANNOI TO SSA3KEY.

IF SSA2KEY NOT = LOW-VALUE GO TO CHECK-PROC.

IF SSA3KEY NOT = LOW-VALUE GO TO LOAN-PROC.

CALL "CBLTDLI" USING GU PCB1 DLIO SSAL.

IF TCAFCRC NOT EQUAL TO " " GO TO INTERFACE-ERROR.

IF STATUS-CODE = " " GO TO GU-OK.

IF STATUS-CODE = "GE" MOVE "CUSTOMER" TO ERRNAMEO
MOVE CUSTNOI TO ERRNOO
GO TO ERR-MSG.

GO TO ERRORIL.

CHECK-PROC.

MOVE CHECKNOI TO SSA2KEY.

CALL "CBLTDLI" USING GU PCB1 DLIO SSA1 SSA2.

IF TCAFCRC NOT = " " GO TO INTERFACE-ERROR.

IF STATUS-CODE = " " GO TO GU-OK.

IF STATUS-CODE = "GE" MOVE "CHECK" TO ERRNAMEO
MOVE CHECKNOI TO ERRNOO
GO TO ERR-MSG.

LOAN-PROC.

MOVE LOANNOI TO SSA3KEY.

CALL "CBLTDLI"™ USING GU PCB1 DLIO SSA1 SSA3.

IF TCAFCRC NOT = " " GO TO INTERFACE-ERROR.

ABJIVPO3

00016000
00524000
00525000
00525000

00526000
00527000
00528000
00529000
00530000
00531000
00532000
00533000
00534000
00535000
00535000

00536000
00536000

00537000
00538000
00539000
00540000
00541000
00542000
00543000
00544000
00545000
00546000
00547000
00548000
00549000
00550000
00551000
00552000
00553000
00554000
00555000
00556000
00557000
00558000
00559000
00560000

27 APR 1998 18:43:36 PAGE 14
.IDENTFCN MSGID SEV ---DIAGNOSTICS ---

ABJ6207 00 BLL CONVERTED TO SET POINTER

SET ADDRESS OF ...

ABJ6301 04 31 BIT ESA ADDRESSES WILL BE
TREATED AS NEGATIVE NUMBERS:
RESULTS MAY BE UNPREDICTABLE
*%% MANUAL UPDATE RECOMMENDED

ABJ6207 00 BLL CONVERTED TO SET POINTER

SET ADDRESS OF ...

ABJ6301 04 31 BIT ESA ADDRESSES WILL BE
TREATED AS NEGATIVE NUMBERS:
RESULTS MAY BE UNPREDICTABLE
*%% MANUAL UPDATE RECOMMENDED

ABJ6207 00 BLL CONVERTED TO SET POINTER

SET ADDRESS OF ...

ABJ6301 04 31 BIT ESA ADDRESSES WILL BE
TREATED AS NEGATIVE NUMBERS:
RESULTS MAY BE UNPREDICTABLE
*%% MANUAL UPDATE RECOMMENDED

Appendix H. Sample output

235

5648-B05 V2R1

LINEID ~ SEQNBR-

000734
000735
000736
000737
000738
000739
000740 *0OLD*=
000741
000742
000743
000744
000745
000746
000747
000748
000749
000750
000751
000752
000753
000754
000755
000756
000757
000758
000759
000760
000761
000762
000763
000764
000765
000766
000767
000768
000769
000770
000771
000772
000773
000774
000775 *0OLD*=
000776
000777
000778
000779
000780
000781
000782
000783
000784
000785
000786

236 ccca

- IBM COBOL CONVERSION AID - SAMPLE RUN
AlB.. ... 2 o0 COBOL SOURCE STATEMENTS ... 6
IF STATUS-CODE = " " GO TO GU-OK.

IF STATUS-CODE = "GE" MOVE "LOAN" TO ERRNAMEO
MOVE LOANNOI TO ERRNOO
GO TO ERR-MSG.
GU-0K.
MOVE 1 TO PAGE-OVERFLOW-CTR.

EXEC CICS GETMAIN SET(CINQOUT-PTR) LENGTH(96) END-EXEC.
EXEC CICS GETMAIN SET(ADDRESS OF MAP11I) LENGTH(96) END-EXEC.

EXEC CICS SEND MAP("MAP11") MAPSET("CINQOUT") ACCUM
ERASE PAGING FRSET FREEKB END-EXEC.
PAGE-BUILD.
MOVE SEG-NAME-FB TO SEGNAMEO.
MOVE DLIO TO SEGCONTO.
SEND-MAP2.
MOVE 2 TO PAGE-OVERFLOW-CTR.
EXEC CICS SEND MAP("MAP21") MAPSET("CINQOUT") ACCUM
PAGING FRSET FREEKB END-EXEC.

GNP-LOOP.
CALL "CBLTDLI" USING GNP PCB1 DLIO.
IF TCAFCRC NOT = " " GO TO INTERFACE-ERROR.
IF STATUS-CODE = " " OR STATUS-CODE = "GA"

OR STATUS-CODE = "GK" GO TO PAGE-BUILD.
IF STATUS-CODE = "GE" OR STATUS-CODE = "GB"
GO TO END-GNP-LOOP.
GO TO ERRORI.
END-GNP-LOOP.
EXEC CICS SEND MAP("MAP31") MAPSET("CINQOUT") ACCUM
PAGING FRSET FREEKB END-EXEC.
EXEC CICS SEND MAP("MAP41") MAPSET("CINQOUT") ACCUM
PAGING FRSET FREEKB END-EXEC.
PAGE-OUT.
EXEC CICS SEND PAGE NOAUTOPAGE END-EXEC.
END-PROG.
PROG-RETURN.
CALL "CBLTDLI" USING TERM.
EXEC CICS RETURN TRANSID("CINQ") END-EXEC.
ERRORS.
PERFORM SAVE-INFO.
EXEC CICS DUMP DUMPCODE ("ERRS") END-EXEC.
GO TO PROG-RETURN.
CIDL.

EXEC CICS GETMAIN SET(CIDLOUT-PTR) LENGTH(12) END-EXEC.
EXEC CICS GETMAIN SET(ADDRESS OF MAP13I) LENGTH(12) END-EXEC.

MOVE LOW-VALUE TO MAP130.

EXEC CICS SEND MAP("MAP13") MAPSET("CIDLOUT") ERASE END-EXEC.

EXEC CICS RETURN END-EXEC.
PAGE-OVERFLOW.
EXEC CICS SEND MAP("MAP41") MAPSET("CINQOUT") ACCUM
PAGING FREEKB END-EXEC.
EXEC CICS SEND MAP("MAP11") MAPSET("CINQOUT") ACCUM
ERASE PAGING FRSET FREEKB END-EXEC.
GO TO GU-OK SEND-MAP2 DEPENDING ON PAGE-OVERFLOW-CTR.
ERR-MSG.

ABJIVPO3 27 APR 1998 18:43:36 PAGE 15

00561000
00562000
00563000
00564000
00565000
00566000
00567000
00567000
00568000
00569000
00570000
00571000
00572000
00573000
00574000
00575000
00576000
00577000
00578000
00579000
00580000
00581000
00582000
00583000
00584000
00585000
00586000
00587000
00588000
00589000
00590000
00591000
00592000
00593000
00594000
00595000
00596000
00597000
00598000
00599000
00600000
00601000
00601000
00602000
00603000
00604000
00605000
00606000
00607000
00608000
00609000
00610000
00611000

.IDENTFCN MSGID SEV ---D I AGNOSTICS ---

ABJ6201 00 POINTER OPTION IN EXEC CICS
CHANGED TO ADDRESS OF

ABJ6201 00 POINTER OPTION IN EXEC CICS
CHANGED TO ADDRESS OF

16

5648-B05 V2R1 - IBM COBOL CONVERSION AID - SAMPLE RUN ABJIVPO3 27 APR 1998 18:43:36 PAGE
LINEID SEQNBR-A 1 B.. ... 2 o0 COBOL SOURCE STATEMENTS ... 6 7 .IDENTFCN MSGID SEV ---DIAGNOSTICS ---
000787 EXEC CICS SEND MAP("MAP1") MAPSET("CINQIN") ACCUM 00612000

000788 PAGING FREEKB END-EXEC. 00613000

000789 EXEC CICS SEND MAP("MAP2") MAPSET("CINQIN") ACCUM 00614000

000790 PAGING FREEKB END-EXEC. 00615000

000791 EXEC CICS SEND PAGE END-EXEC. 00616000

000792 GO TO END-PROG. 00617000

000793 INTERFACE-ERROR. 00618000

000794 MOVE TCAFCRC TO SAVE-TCAFCRC. 00619000

000795 MOVE TCADLTR TO SAVE-TCADLTR. 00620000

000796 PERFORM SAVE-INFO. 00621000

000797 EXEC CICS DUMP DUMPCODE("INTE") END-EXEC. 00622000

000798 *0OLD=** EXEC CICS GETMAIN SET(ERRORMP-PTR) LENGTH(85) END-EXEC. 00623000 ABJ6201 00 POINTER OPTION IN EXEC CICS
000799 EXEC CICS GETMAIN SET(ADDRESS OF MAP12I) LENGTH(85) END-EXEC.00623000 CHANGED TO ADDRESS OF
000800 MOVE "#*% INTERFACE ERROR. DUMP IN PROGRESS.***" TO ERRMSGO. 00624000

000801 EXEC CICS SEND MAP("MAP12") MAPSET("ERRORMP") ACCUM 00625000

000802 PAGING FREEKB END-EXEC. 00626000

000803 GO TO CIDL. 00627000

000804 ERRORI. 00628000

000805 PERFORM SAVE-INFO. 00629000

000806 EXEC CICS DUMP DUMPCODE("ERRO") END-EXEC. 00630000

000807 *0OLD=*= EXEC CICS GETMAIN SET(ERRORMP-PTR) LENGTH(85) END-EXEC. 00631000 ABJ6201 00 POINTER OPTION IN EXEC CICS
000808 EXEC CICS GETMAIN SET(ADDRESS OF MAP12I) LENGTH(85) END-EXEC.00631000 CHANGED TO ADDRESS OF
000809 MOVE "#*% DL/1 CALL ERROR. DUMP IN PROGRESS.#**" TO ERRMSGO. 00632000

000810 EXEC CICS SEND MAP("MAP12") MAPSET("ERRORMP") ACCUM 00633000

000811 PAGING FREEKB END-EXEC. 00634000

000812 GO TO CIDL. 00635000

000813 SAVE-INFO. 00636000

000814 MOVE STATUS-CODE TO SAVE-STATUS-CODE. 00637000

000815 MOVE TCACCCA TO SAVE-TCACCCA. 00638000

000816 END-PGM. 00639000

000817 STOP RUN. 00640000 ABJ6126 99 *======--mmmmmmmmmmmmm oo

5648-B05 V2R1

CONVERSION FROM DOS/VS COBOL

OPTIONS IN EFFECT :
Check procedure names
Flag Report Writer statements...
Remove obsolete elements
Negate implicit EXIT PROGRAM ...
Generate END PROGRAM header
Compile after converting
Flag manual changes (new source)
Add DATE FORMAT clauses (MLE)
Remove VALUE clauses in FS & LS
FLAG:IF FILE-STATUS (NOT) = "00"
Flag BLL cell arithmetic
BLL cell conversion method......
Search source for literal delim.
Literal delimiter (QUOTE/APOST).

- IBM COBOL CONVERSION AID -

SAMPLE RUN

*= END OF COBOL CONVERSION

* 5648-B05 COBOL CONVERSION

ABJIVPO3

OPTION-15

HIGHEST SEVERITY MESSAGE FOR
0016 MESSAGES ISSUED

0016 MESSAGES PRINTED

LINEID MSGID RC
000021 ABJ6212 00
000141 ABJ6088 00
000206 ABJ6203 00
000601 ABJ6088 00
000649 ABJ6088 00
000674 ABJ6088 00
000693 ABJ6207 00
000693 ABJ6301 04
000705 ABJ6207 00
000705 ABJ6301 04
000708 ABJ6207 00
000708 ABJ6301 04
000741 ABJ6201 00
000776 ABJ6201 00
000799 ABJ6201 00
000808 ABJ6201 00

THIS CONVERSION: 04

MESSAGE TEXT

WORKING POINTER FOR CICS ADDED TO WORKING STORAGE
LANGLEVEL 1 COPY IS CHANGED

BLL'S ARE REMOVED

LANGLEVEL 1 COPY IS CHANGED

LANGLEVEL 1 COPY IS CHANGED

LANGLEVEL 1 COPY IS CHANGED

BLL CONVERTED TO SET POINTER SET ADDRESS OF ...

31 BIT ESA ADDRESSES WILL BE TREATED AS NEGATIVE NUMBERS:

*%% MANUAL UPDATE RECOMMENDED
BLL CONVERTED TO SET POINTER SET ADDRESS OF ...

31 BIT ESA ADDRESSES WILL BE TREATED AS NEGATIVE NUMBERS:

*%% MANUAL UPDATE RECOMMENDED
BLL CONVERTED TO SET POINTER SET ADDRESS OF ...

31 BIT ESA ADDRESSES WILL BE TREATED AS NEGATIVE NUMBERS:

*%% MANUAL UPDATE RECOMMENDED

POINTER OPTION IN EXEC CICS CHANGED TO ADDRESS OF
POINTER OPTION IN EXEC CICS CHANGED TO ADDRESS OF
POINTER OPTION IN EXEC CICS CHANGED TO ADDRESS OF
POINTER OPTION IN EXEC CICS CHANGED TO ADDRESS OF

TO COBOL FOR VSE/ESA
.......... YES Source Tanguage level DOS/VS COBOL LANGLVL(1)
YES CICS wvviiiiiiiiiiiiiiiiienns YES
....... YES Lines per report page60
YES VSE system date format.......... MM/DD/YY
NO Resequence source lines NO
....... YES
NO Reserved word suffix 74
NO Generate new program............ YES
YES Generate new copy members YES
YES Replace Tike-named copy members. NO
....... YES Print old source lines YES
A Print copy members YES
YES Print diagnostics of Tevel >=... 00
QUOTE Generate tokenization Tisting... NO
..... NO I (0]

RESULTS MAY BE UNPREDICTABLE
RESULTS MAY BE UNPREDICTABLE

RESULTS MAY BE UNPREDICTABLE

Appendix H. Sample output

27 APR 1998 18:43:36 PAGE 17

237

Tokenization

238 ccca

In conversion phase 1, the input program is tokenized and written to the TOKEN
data set. To get a listing of the input program in its tokenized form, set the
Generate tokenization listing on Conversion Options panel 1 to Y (for details, see
|”Setting conversion options” on page 19|).

The generated output lists each line of the COBOL program and the tokenization
for the line.

The columns on the right hand side of this listing are described below.

SEQ-NO
TOKEN-SEQUENCE
Line number in the COBOL source program.

POS TOKEN-POSITION
Starting position in the COBOL statement.

LNGTH
TOKEN-LENGTH
Length of the token.

TYPE TOKEN-TYPE-CODE
Type of the token.

CODE TOKEN-CHANGE-CODE
Indicates type of processing.

FLAG TOKEN-FLAG
Indicates paragraph, statement, or clause.

These identifiers and their values are described in |Appendix E, “Predefined data|
fitems,” on page 175

The following is a partial tokenization listing of the program ABJIVPO1.

E N T I I I

SEQ-NO/POS/LNGTH/TYPE/CODE/FLAG

IDENTIFICATION DIVISION. 00001000
IDENTIFICATION R R R R R R R N R R R R R R R R R N R R N N T . 000010 01 014 w 990
DIVISION : 000010 16 008 W 990
. : 000010 24 001 000
PROGRAM-ID. ABJIVPO1. 00002000
PROGRAM-ID :: : 000020 01 010 W 990
000020 11 001 000
000020 13 008 W 000
. : 000020 21 001 000
-- * 00003000
LICENSED MATERIALS - PROPERTY OF IBM * 00004000
* 00005000
5785-CCC 5785-ABJ 5648-B05 5686-A07 * 00006000
* 00007000
(C) COPYRIGHT IBM CORP. 1982, 1998. ALL RIGHTS RESERVED. * 00008000
* 00009000
US GOVERNMENT USERS RESTRICTED RIGHTS - USE, * 00010000
DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP * 00011000
SCHEDULE CONTRACT WITH IBM CORP. * 00012000
* 00013000
-- * 00014000
REMARKS . 00015000
REMARKS :eescsrrroscssrroosssrroosssrroosssszoossaszrssszzzrzsszzzzzzzzze: 000150 01 007 W 990
THIS PROGRAM IS BEING WRITTEN TO TEST THE PROPER CONVERSION 00016000
FROM 0S/VS COBOL SOURCE LANGUAGE TO IBM SOURCE LANGUAGE. 00017000
AUTHOR. XXXXXX. 00018000
AUTHOR :::::: trrrrriirooooriroooiiriooririosoririosiiriosiiiiicciz: 000180 O1 006 W 856
DATE-WRITTEN. JANUARY 24 00019000
DATE-WRITTEN :eecczsreooczsrrooszsrrooszsrrooszszrrsszszzrozszzrzzzzzzee: 000190 01 012 W 856
00020000
NOTE - THE FOLLOWING AREAS ARE ADDRESSED 00021000
1 REMARKS 00022000
2 THEN 00023000
3 OTHERWISE 00024000
4 CURRENT-DATE 00025000
5 TIME-OF-DAY 00026000
6 NOTE 00027000
7 EXAMINE...TALLYING...REPLACING 00028000
8 JUSTIFIED. 00029000
00030000
DATE-COMPILED. TODAYS DATE. 00031000
DATE-COMPILED :::csscccscsssrcsszsssosszsssoosasssossssssosszzszozzzzzee: 000310 01 013 W 990
EJECT 00032000
ENVIRONMENT DIVISION. 00033000
ENVIRONMENT R R R R R R R R R R R R R R R E R R R E R R R : 000330 01 011 w 990
DIVISION : : 000330 13 008 W 990
. : 000330 21 001 000
INPUT-OUTPUT SECTION. 00034000
INPUT_OUTPUT R R R RN : 000340 01 012 w 990
SECTION : : 000340 14 007 W 990
. : 000340 21 001 000
FILE-CONTROL. 00035000
FILE-CONTROL :: : 000350 01 012 W 999
A : 000350 13 001 000
SELECT PRINT-FILE 00036000
SELECT coccrrrrscsrrrosssrooosssrzoosssszoossszzrossszzrsszszzzzzzzz: 000360 05 006 W 990
ASSIGN TO UT-3330-S-DDPRINT. 0003700
PRINT_FILE ... 000360 12 010 w 000
ASSIGN :: : 000370 05 006 W 990
T0 : 000370 12 002 W 999
UT-3330-S-DDPRINT : : 000370 15 017 W 000
Lotrriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiioc 000370 32 001 000
DATA DIVISION. 0003800
: 000380 01 004 W 999
DIVISION : : 000380 06 008 W 990
LoTIiiiririiioiiiiiiiiiiioiiiiiioiiiiiioiiiiiioiiiiiiooo: 000380 14 001 000
FILE SECTION. 0003900
: 000390 01 004 W 999
000390 06 007 W 990
000390 13 001 000
000400 01 002 W 990

Appendix H. Sample output

01

01

01

01

01

01

01

01

01

01

02

02

21

01

02

239

RECORDING MODE IS F 00041000

PRINT-FILE :::ecooccosrococssoooossrooosssooossroooosoooosssoooosss
RECORDING :: :
IS ::: HE
LABEL RECORDS ARE STANDARD 00042000
F e e
LABEL :::izrzzzziczce:
RECORDS ::::
ARE : HE
DATA RECORD IS OUT-LINE. 00043000
STANDARD ... :
DATA ::::::: :
RECORD ::
IS
OUT-LINE :
01 OUT-LINE PIC X(80). 00044000
OUT-LINE :
WORKING-STORAGE SECTION. 00045000
WORKING_STORAGE R R R R R R R R R R E R R R R E R e
SECTION :
77 MY-COUNTER PIC 9(5) VALUE 0. 00046000
77 R :
MY-COUNTER ::: :
77 TRIPSWCH PIC 9 VALUE 0. 00047000
77 HE
TRIPSWCH :::
PIC
77 PASSWCH PIC 9 VALUE 0. 00048000
77 HEH
PASSWCH :eoezsrccoczee:
PIC
77 FAILSWCH PIC 9 VALUE 1. 00049000
77 HE
FAILSWCH :
77 CURRFLAG PIC 9 VALUE 0. 0005000
77 HE
CURRFLAG :
77 TOFDFLAG PIC 9 VALUE 0. 00051000
77 siririosiiee: HE
TOFDFLAG :::

240 ccca

000400
000410
000410
000410

000410
000420
000420
000420

000420
000430
000430
000430
000430
000430

000440
000440
000440
000440
000440

000450
000450
000450

000460
000460
000460
000460
000460
000460
000460

000470
000470
000470
000470
000470
000470
000470

000480
000480
000480
000480
000480
000480
000480

000490
000490
000490
000490
000490
000490
000490

000500
000500
000500
000500
000500
000500
000500

000510
000510
000510

20
28

01
05
24
28
33

01
17
24

01
05
24
28
34
40
41

01
05
24
28
34
40
41

01
05
24
28
34
40
41

01
05
24
28
34
40
41

01
05
24
28
34
40
41

01
05
24

010
009
004
002

001
005
007
003

008
004
006
002
008
001

002
008
003
005
001

015
007
001

002
010
003
004
005
001
001

002
008
003
001
005
001
001

002
007
003
001
005
001
001

002
008
003
001
005
001
001

002
008
003
001
005
001
001

002
008
003

=== = === =

=E====

Z=ZUvUouv=== Z2=UvUuU== Z2=ZUvUoUv== Z=UvUoU==

Z2=Z v Uuv==

000
999
999
999

000
990
999
999

999
999
990
999
000
000

990
000
990
000
000

990
990
000

990
000
990
000
990
999
000

990
000
990
000
990
999
000

990
000
990
000
990
999
000

990
000
990
000
990
990
000

990
000
990
000
990
999
000

990
000
990

02

02

21
02

02

01

02

02

02

02

02

02

02

02

02

02

02

77 1 PIC 9 VALUE ©. 00052000
77 ::: :

77 DATEL PIC X(8) VALUE SPACES. 0005300
77 sirezzzee: :
DATEL :::
SPACES
77 DATE2 PIC X(8) VALUE SPACES. 0005400
77 sireiioe: :
DATE2 :::
SPACES
77 DATE3 PIC X(8) VALUE SPACES. 00055000
77 w:i: :
DATE3
VALUE :
SPACES
77 TIME1 PIC X(6) VALUE SPACES. 00056000

SPACES :

77 TIME2 PIC X(6) VALUE SPACES. 00057000

77 R R R R R R R R R R R R R R E R R E R R R R R e :
TIME2 ::: :
VALUE ::iiesis
SPACES :
77 TIME3 PIC X(6) VALUE SPACES. 00058000
77 :
SPACES :
00059000
01 ORIGINAL-NUMBER. 00060000
01 R R R R R R R R R R R R R N R R N R R R N R R R N N N s

ORIGINAL-NUMBER

05 FILLER PIC 9(18) VALUE 0. 00061000
05::::::: .. .
FILLER : :

000510
000510
000510
000510

000520
000520
000520
000520
000520
000520
000520

000530
000530
000530
000530
000530
000530
000530

000540
000540
000540
000540
000540
000540
000540

000550
000550
000550
000550
000550
000550
000550

000560
000560
000560
000560
000560
000560
000560

000570
000570
000570
000570
000570
000570
000570

000580
000580
000580
000580
000580
000580
000580

000600
000600
000600

000610
000610
000610
000610
000610

28
34
40
41

01
05
24
28
34
40
41

01
05
24
28
34
40
46

01
05
24
28
34
40
46

01
05
24
28
34
40
46

01
05
24
28
34
40
46

01
05
24
28
34
40
46

01
05
24
28
34
40
46

01
05
20

05
09
20
24
30

Appendix H. Sample output

001
005
001
001

002
001
003
001
005
001
001

002
005
003
004
005
006
001

002
005
003
004
005
006
001

002
005
003
004
005
006
001

002
005
003
004
005
006
001

002
005
003
004
005
006
001

002
005
003
004
005
006
001

002
015
001

002
006
003
005
005

=E=UvUoU== == v UOU== == UvUouU== =E=UvUuU== == v UOU== Z=UvUouU==

== UvUouU==

000
990
999
000

990
000
990
000
990
999
000

990
000
990
000
990
999
000

990
000
990
000
990
999
000

990
000
990
000
990
999
000

990
000
990
000
990
999
000

990
000
990
000
990
999
000

990
000
990
000
990
999
000

990
000
000

000
999
990
000
990

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

02

241

0 :::

VALUE 0.

FILLER

05 FILLER PIC 9(18) VALUE 000000009099843576. 00063000

242 CCCA

05::::::::
FILLER ::: :
000000009099843576
05 FILLER PIC 9(18) VALUE 121212121212121290. 00064000
121212121212121290 ::
00065000
THIS-DEF REDEFINES ORIGINAL-NUMBER. 0006600
THIS-DEF :::
REDEFINES ::
ORIGINAL-NUMBER :
03 A-NUMBER OCCURS 2 TIMES. 0T éééé%éé@
03 srrrrzzziioe: HE
A-NUMBER :::
OCCURS :
2 i
TIMES
05 LINEL PIC 9(18). 00068000
05:::::::: ... e
LINEL z::ezecee :
PIC ::
9(18)
05 LINE2 PIC 9(18). 0006900
00070000
A-POEM. 00071000
03 LINEL. 00072000
03 R R R R R] e
LINE1 :
05 FILLER PIC X(20) VALUE "ROSES ARE RED VIOLET". 00073000
"ROSES ARE RED VIOLET" :
05 FILLER PIC X(20) VALUE "S ARE BLUE, " 00074000
05 crrrrrrrrrrrrrri e

000610
000610

000620
000620
000620
000620
000620
000620
000620

000630
000630
000630
000630
000630
000630
000630

000640
000640
000640
000640
000640
000640
000640

000660
000660
000660
000660
000660

000670
000670
000670
000670
000670
000670

000680
000680
000680
000680
000680

000690
000690
000690
000690
000690

000710
000710
000710

000720
000720
000720

000730
000730
000730
000730
000730
000730
000730

000740

001
001

002
006
003
005
005
001
001

002
006
003
005
005
018
001

002
006
003
005
005
018
001

002
008
009
015
001

002
008
006
001
005
001

002
005
003
005
001

002
005
003
005
001

002
006
001

002
005
001

002
006
003
005
005
022
001

002

N

Z2=Z=UvUoUv===

Z=UvUouU==

Z=TUvUOU==

v UoOU== =====

wUoU==

r=UvUou==

999
000

000
999
990
000
990
999
000

000
999
990
000
990
000
000

000
999
990
000
990
000
000

990
000
990
000
000

000
000
990
000
999
000

000
000
990
000
000

000
000
990
000
000

990
000
000

000
000
000

000
999
990
000
990
864
000

000

02

02

02

02

02

02

02

02

02

02

02

02
00

01

FILLER

'S ARE
03 LINEZ. " 00075000
03 R R R R R :

LINE2
05 FILLER PIC X(20) VALUE "SUGAR IS SWEET AND S". 00076000
05 trrrrrie: :
FILLER ::: :
"SUGAR IS SWEET AND S"
05 FILLER PIC X(20) VALUE "O ARE YOU. . B 00077060
05 zrrrrzzo:
FILLER :::
PIC
" "00078000
00079000

FAIL1CONZ. 00080000

FAILICONZ :

03 FILLER PIC XX VALUE SPACES. 00081000

FILLER :
PIC ::

SPACES

03 CPLACE PIC X(20) VALUE SPACES. 00082000

SPACES :
00083000

FAIL2CON. 00084000

FAIL2CON

00085000

03 FILLER PIC X(20) VALUE "ALL THREE READINGS 0"

"ALL THREE READINGS 0

03 FILLER PIC X(20) VALUE "F 'CURRENT-DATE' SHO": N 00086060

03 :rrrozc: :
FILLER : :

"F 'CURRENT-DATE' SHO"

03 FILLER PIC X(20) VALUE "ULD BE THE SAME, BUT". 00087000

000740
000740
000740
000740
000740
000740

000750
000750
000750

000760
000760
000760
000760
000760
000760
000760

000770
000770
000770
000770
000770
000770
000770

000800
000800
000800

000810
000810
000810
000810
000810
000810
000810

000820
000820
000820
000820
000820
000820
000820

000840
000840
000840

000850
000850
000850
000850
000850
000850
000850

000860
000860
000860
000860
000860
000860
000860

01
05
14

05
09
24
28
34
40
46

05
09
24
28
34
40
46

01
05
13

05
09
24
28
34
40
62

05
09
24
28
34
40
62

Appendix H. Sample output

006
003
005
005
022
001

002
005
001

002
006
003
005
005
022
001

002
006
003
005
005
022
001

002
009
001

002
006
003
002
005
006
001

002
006
003
005
005
006
001

002
008
001

002
006
003
005
005
022
001

002
006
003
005
005
022
001

r=UovUuU==

== UvUouU== =E=UvUoU== r=TUvUoU==

—T=ToODUoU==

r=UvUo==

999
990
000
990
864
000

000
000
000

000
999
990
000
990
864
000

000
999
990
000
990
864
000

990
000
000

000
999
990
000
990
999
000

000
000
990
000
990
999
000

990
000
000

000
999
990
000
990
864
000

000
999
990
000
990
864
000

02

02
00

02

02
00

02

02
00

02

02

02

02

02

02
00

02

02
00

243

FILLER :::

VALUE

"ULD BE THE SAME, BUT"

03 FILLER PIC X(20) VALUE " THEY ARE: " 0008800

" 00089000
01 FAIL2CON2. 00090000

03 FILLER PIC XX VALUE SPACES. 0009100

FILLER :::
03 DPLACE VALUE SPACES: 00092060
03 iz :
DPLACE
00093000

01 FAIL3CON. 00094000

FAIL3CON

03 FILLER PIC X(20) VALUE "THE THREE READINGS 0". 0009500
03 N
FILLER :::
VALUE
"THE THREE READINGS 0"
03 FILLER PIC X(20) VALUE "F 'TIME-OF-DAY' SHOU": B 00096660
03 iz :
FILLER :::
PIC ::
VALUE :
"F 'TIME-OF-DAY' SHOU
03 FILLER PIC X(20) VALUE "LD BE EQUAL OR IN AS". 00097000
03 R R R R R] e
FILLER :z:::cozzzze:
PIC ::
VALUE :cccccccccccccccoooe:
"LD BE EQUAL OR IN AS
03 FILLER PIC X(20) VALUE "CENDING ORDER, "
03 R N N R N R R N N N N

FILLER :::

244 CCCA

000870
000870
000870
000870
000870
000870
000870

000880
000880
000880
000880
000880
000880
000880

000900
000900
000900

000910
000910
000910
000910
000910
000910
000910

000920
000920
000920
000920
000920
000920
000920

000940
000940
000940

000950
000950
000950
000950
000950
000950
000950

000960
000960
000960
000960
000960
000960
000960

000970
000970
000970
000970
000970
000970
000970

000980
000980
000980
000980
000980

05
09
24
28
34
40
62

05
09
24
28
34
40
62

01
05
14

05
09
24
28
34
40
46

05
09
24
28
34
40
46

01
05
13

05
09
24
28
34
40
62

05
09
24
28
34
40
62

05
09
24
28
34
40
62

05
09
24
28
34

002
006
003
005
005
022
001

002
006
003
005
005
022
001

002
009
001

002
006
003
002
005
006
001

002
006
003
004
005
006
001

002
008
001

002
006
003
005
005
022
001

002
006
003
005
005
022
001

002
006
003
005
005
022
001

002
006
003
005
005

—F=UovUoU==

r=TUvUuU=x=

=E=vovUouU==

=E=TUvDUoU==

r=UvUuU== —T=TUvUUoOU==

—r=UvUuU==

000
999
990
000
990
864
000

000
999
990
000
990
864
000

990
000
000

000
999
990
000
990
999
000

000
000
990
000
990
999
000

990
000
000

000
999
990
000
990
864
000

000
999
990
000
990
864
000

000
999
990
000
990
864
000

000
999
990
000
990

02

02
00

02

02
00

02

02

02

02

02

02
00

02

02
00

02

02
00

02

02

"CENDING ORDER, RIS

00099000
01 FAIL3CONI. 00100000

0010100

" 00162000
01 FAIL3CONZ. 00103000

03 FILLER PIC XX VALUE SPACES. 0010400

FILLER :

SPACES

03 TPLACE PIC X(6) VALUE SPACES. 00105000

TPLACE :
PIC ::

00106000
01 FAILCON. 00107000

"TEST CASE SAMPLE 0010800

FILLER :

"TEST CASE SAMPLE F"

03 FILLER PIC X(20) VALUE "AILED.

00109000

FILLER :
PIC

"AILED.

00110000
01 SUCCESS. 00111000

TEST CASE SAMPLE 00112000

"TEST CASE SAMPLE I"

03 FILLER PIC X(20) VALUE "S SUCCESSFUL. . 00113000

000980
000980

001000
001000
001000

001010
001010
001010
001010
001010
001010
001010

001030
001030
001030

001040
001040
001040
001040
001040
001040
001040

001050
001050
001050
001050
001050
001050
001050

001070
001070
001070

001080
001080
001080
001080
001080
001080
001080

001090
001090
001090
001090
001090
001090
001090

001110
001110
001110

001120
001120
001120
001120
001120
001120
001120

40
62

01
05
14

05
09
24
28
34
40
62

01
05
14

05
09
24
28
34
40
46

05
09
24
28
34
40
46

01
05
12

05
09
24
28
34
40
62

05
09
24
28
34
40
62

01
05
12

05
09
24
28
34
40
62

Appendix H. Sample output

022
001

002
009
001

002
006
003
005
005
022
001

002
009
001

002
006
003
002
005
006
001

002
006
003
004
005
006
001

002
007
001

002
006
003
005
005
022
001

002
006
003
005
005
022
001

002
007
001

002
006
003
005
005
022
001

r=UvUuU==

=E=UvUuU==

== UvUouU==

mF=ToOUoU==

r=UvUuU==

—F=TUvDDUoU==

864
000

990
000
000

000
999
990
000
990
864
000

990
000
000

000
999
990
000
990
999
000

000
000
990
000
990
999
000

990
000
000

000
999
990
000
990
864
000

000
999
990
000
990
864
000

990
000
000

000
999
990
000
990
864
000

00

02

02
00

02

02

02

02

02

02
00

02

02
00

02

02
00

245

001130

FILLER ::: ;001130
T : 001130
¢ 001130
: 001130
"S SUCCESSFUL. : 001130
Lot 001130
EJECT 0011400
PROCEDURE DIVISION. 00115000
PROCEDURE 11 001150
DIVISION ;001150
Lorrriii:o 001150
THIS-IS-A SECTION. 0011600
THIS-IS-A ::: 001160

SECTION 001160
001160
START-HERE.
START-HERE ::: 001170
Lot 001170
MOVE TIME-OF-DAY TO TIME1
MOVE 001180
001180

001180

TO ::: :
OPEN OUTPUT PRINT-FILE 00119000
TIMEI R R R R R R R R R E R R R R R N e

001180
OPEN :::zzzee: : 001190
OUTPUT :: t:r 001190

MOVE CURRENT-DATE TO DATEL 00120000
PRINT_FILE ... : 001190

MOVE :::iecccccee: ¢ 001200
CURRENT-DATE : : 001200
001200

TO :: HE
MOVE CURRENT-DATE TO DATE2 00121000
DATEL : : 001200
MOVE ::::iceczcecce: ;001210
;001210
TO seecesssrroosszsroosszssrossnssrossnsszozzaeze: 001210
MOVE CURRENT-DATE TO DATE3. 0012200
DATE2 : tir 001210
MOVE :::sscccccrcce: ¢ 001220
CURRENT-DATE ::: ¢ 001220
TO ceccee ;001220
DATE3 : ¢ 001220
ii: 001220
00123000
MOVE TIME-OF-DAY TO TIME2. 00124000
MOVE :::::cczcce
TIME-OF-DAY :

001240
001240
001240
001240
001240

00125000

t:r 001250
001250
001250
001250
001250
: 001250
¢ 001250

HE 001250
Trriiiiiiiiiiiiiiiiiiiiiiiiio: 001260

OTHERWISE

SENTENCE 001260

MOVE FAILSWCH TO TRIPSWCH 00128000
OTHERWISE :::eeoezrreeocssroosssrroosssrzoossnzzoosszzooszzzzzzzsy 001270
MOVE :::::iiccc: : 001280
FAILSWCH : : 001280
TO :: ::: 001280

MOVE DATE1 TO DPLACE 00129000
TRIPSWCH ::szcozezercozsssrcozssssszzzzszzzzzss: 001280

246 CCCA

05
09
24
28
34
40
62

01

002
006
003
005
005
022
001

009
008
001

009
007
001

010
001

004
011
002

005
004
006

010
004
012
002

005
004
012
002

005
004
012
002
005
001

004
011
002
005
001

002
005
005
005
003
005
005

004
004

008
009
004
008
002

008

—F=UovUoU==

W

=== = === =

=== = =E====

EEEZ=Z = = =

W

W

=== =

W

000
999
990
000
990
864
000

990
990
000

860
990
000

860
000

851
990
999

000
990
999

000
851
990
999

000
851
990
999

000
851
990
999
000
000

851
990
999
000
000

999
000
991
000
999
991
000

990
999

999
990
851
000
999

000

02

02
00

01

01

01

03

03

03

03

03

03

03

03
03

03

TO seerooozrrroooszsrooosorooooszszooosasrooazazooooee
WRITE OUT-LINE FROM FAIL2CON 0013000
DPLACE :: :

WRITE OUT-LINE FROM FAIL2CON2 0013100

FAIL2CON :::

FROM ::: :
MOVE DATE2 TO DPLACE 00132000
FAIL2CON2 ::csczrrccsczsrrosssssoosszsoooosss

WRITE OUT-LINE FROM FAIL2CON2 00133060
DPLACE :: :

%ROM HE
MOVE DATE3 TO DPLACE 00134000
FAI LZCONZ R R N :

00135000

FAIL2CON2

MOVE TIME-OF-DAY TO TIME3.

00136000

IF (TIMEL1 LESS THAN TIME2 OR EQUAL TIME2) AND 0013700
IF :::: :

00138000
AND : :

) :.........................;
NEXT SENTENCE 0013900

THEN
NEXT :
OTHERWISE 00140000
SENTENCE ::::eozzcssscosssssoossssooossssooosssoooasssooanss
MOVE FAILSWCH TO TRIPSWCH 00141000
OTHERWISE :::ccscsssoosssssossssrooossssoooosooooasooooiassoosses

001290
001290
001290

001290
001300
001300
001300

001300
001310
001310
001310

001310
001320
001320
001320

001320
001330
001330
001330

001330
001340
001340
001340

001340
001350
001350
001350
001350
001350

001360
001360
001360
001360
001360

001370
001370
001370
001370
001370
001370
001370
001370
001370
001370

001370
001380
001380
001380
001380
001380
001380
001380
001380
001380

001380
001390

09
14
20

23
09
15
24

29
09

24

05

22
25
30

05

08
09

45

Appendix H. Sample output

004
005
002

006
005
008
004

008
005
008
004

009
004
005
002

006
005
008
004

009
004
005
002

006
005
008
004
009
001

004
011
002
005
001

002
001
005
004
004
005
002
005
005
001

003
001
005
004
004
005
002
005
005
001

004
004

008

009

=== = ====

=== =

=E====

=E===== =

EE=E==Z == =

851
000
999

000
990
000
999

000
990
000
999

000
851
000
999

000
990
000
999

000
851
000
999

000
990
000
999
000
000

851
990
999
000
000

999
000
000
991
990
000
999
991
000
863

999
000
000
991
990
000
999
991
000
863

990
999

999

990

03

03

03

03

03

03

03

03

03

00

00

03
03

247

AFTER-THOUGHT.
AFTER-THOUGHT ::

248 CCCA

MOVE TALLY TO MY-COUNTER 00152060
MOVE R R R R R R R R R R R R R R R e

MOVE LINE1 OF A-POEM TO OUT-LINE WRITE OUT-LINE 00153000

MOVE LINEZ OF A-POEM TO OUT-LINE WRITE OUT-LINE 00154000

001410
001410
001410

MOVE TIMEL TO TPLACE

TRIPSWCH :: 001410
001420
001420

001420

WRITE OUT-LINE FROM FAIL3CON 0014300

TPLACE :: 001420

WRITE ::zzzzroce: : 001430
: 001430

001430

FROM ::: HE

WRITE OUT-LINE FROM FAIL3CON1 00144000
FAIL3CON ::coeczzzrooszzrrozszzzzozzzzzzzzzzs: 001430

WRITE :s:scessessezscosrocsess . 001440
: : 001440

001440

WRITE OUT-LINE FROM FAIL3CON2
FAIL3CON1 :: 001440

WRITE ::eececozsrcocczsrooooee : 001450
¢ 001450

001450

FROM ::: :
MOVE TIME2 TO TPLACE 00146000
FAIL3CON2 R RN e 001450
MOVE ::::::::: : 001460
: 001460
001460

: 001460
WRITE ::::::::::: ¢ 001470
OUT-LINE :: : 001470
Trrrrriiiioiiiiiriiiiiriiiiiiiiiiiiiii: 001470

MOVE TIME3 TO TPLACE
FAIL3CON2 :: 001470
MOVE ::::::::: : 001480
e : 001480

TO ::: 001480
WRITE OUT-LINE FROM FAIL3CONZ2.
TPLACE :: 001480
001490
001490
001490
001490
001490

001500
001500

EXAMINE s:zssssasossssassasasassasasasasassasasass 001510

A-POEM ::: ¢ 001510
HE : 001510

HH ¢ 001510
SPACES :::crrocc: : 001510
REPLACING : : 001510

001510
001510

[T

001520
001520

o : 001520

MY_COUNTER ... : 001520

: 001530
001530
001530
001530
001530
001530

WRITE :: 001530

OUT_LINE Trrrriiiiiiiiiiiey] 001530
trrririee : 001540
: ¢ 001540
001540
: : 001540
R : 001540
HE ;001540

001540

001540

09
14
23

26
09
14
20

23
09

24

004
008
002

008
004
005
002

006
005
008
004

008
005
008
004

009
005
008
004

009
004
005
002

006
005
008
004

009
004
005
002

006
005
008
004
009
001

013
001

007
006
008
003
006
009
002
003

004
005
002

010
004
005
002
006
002
008
005

008
004
005
002
006
002
008
005

008

=== =

=== =

=== = === =

=== =

=== = === =

=E====

W

rFrEEZ === = =

===

=== === = =

=== === = =

=

851
000
999

000
851
000
999

000
990
000
999

000
990
000
999

000
990
000
999

000
851
000
999

000
990
000
999

000
851
000
999

000
990
000
999
000
000

860
000

990
000
999
990
999
999
999
864

851
999
999

000
851
000
990
000
999
000
990

000
851
000
990
000
999
000
990

000

03

03

03

03

03

03

03

03

03

01

03

02
00

03

03

03

03

03

EXAMINE

IF TALLY = MY-COUNTER S 00156060
IF R R R R :

MOVE "OK" TO OUT-LINE WRITE OUT-LINE 00157000

MY COUNTER .. :
MOVE :: :
noKn
WRITE :: :
OTHERWISE 00158000
OUT-LINE ::escosssssccsssssoosszsooes
MOVE "BAH" TO OUT-LINE WRITE OUT-LINE. 0015900
OTHERWISE R E R E R R R R R :
MOVE :: :
"BAH" :
EXAMINE A-POEM TALLYING ALL "E" 00160000
EXAMINE ::: :
A-POEM
"E" :
PERFORM THREE-LINES 00161000
PERFORM :::zzzrrrosssrroosssroosssroooosssooosssoooosossooosioooosss
EXAMINE A-POEM TALLYING UNTIL FIRST "." 0016200

THREE-LINES t:scsccssesasasassasasasatassasasasasasassasasass .

EXAMINE ::::zzi:ec:
A-POEM :::
TALLYING :::::
PERFORM THREE-LINES 00163000
PERFORM ::osssccsssssoosssssoossssooosasoooososoooosasooooasoooosss

EXAMINE A-POEM TALLYING LEADING "R" 00164000
THREE-LINES : :
EXAMINE ::::zioze:

TALLYING :::
LEADING
g
PERFORM THREE-LINES
PERFORM ::ccsssrcossssoossssroossnsooossstooososoooososooooasoooosns

MOVE 2 T0 I 00166000
THREE-LINES : :

MOVE ::
2 i

00167000

TALLYING :

ALL ::: :
PERFORM THREE-LINES 00168000

001550
001550
001550
001550
001550
001550

001560
001560
001560

001560
001570
001570
001570
001570
001570

001570

001580
001590
001590
001590
001590
001590
001590
001590

001600
001600
001600
001600
001600

001610

001610
001620
001620
001620
001620
001620
001620

001630

001630
001640
001640
001640
001640
001640

001650

001650
001660
001660
001660

001660
001670
001670
001670
001670
001670
001670
001670

001670

05

13
05
13
20
29
37

05

Appendix H. Sample output

007
006
008
003
003
001

002
005
001

010
004
004
002
008
005

008

009
004
005
002
008
005
008
001

007
006
008
003
003

007

011
007
006
008
005
005
003

007

011
007
006
008
007
003

007

011
004
001
002

001
007
008
001
001
001
008
003

001

rE====

rEE==== rE==== = r=E=E=== =E=E=E==rr == =E==r==

====

W

W

N

990
000
999
990
864
000

999
999
997

000
851
864
999
000
990

000

990
851
864
999
000
990
000
000

990
000
999
990
864

990

000
990
000
999
999
999
864

990

000
990
000
999
999
864

990

000
851
000
999

000
990
000
000
000
863
999
990

990

03

00

03

00

03
00

03

03

00

03

03

00

03

03

00

03

03

02

00

03

03

03

00

249

PERFORM :s::ss 001680
EXAMINE A-NUMBER(I) TALLYING LEADING O REPLACING BY 2. 00169000
THREE_LINES .. : 001680
EXAMINE ::::ziicoce: ¢ 001690
: ;001690
001690
B ¢ 001690
) EEEEREEE ;001690
TALLYING :ez:ecze: : 001690
LEADING : 001690
001690
001690
001690
001690
001690

0
REPLACING :::
BY

THREE-LINES. n 00176660
THREE-LINES : : 001700

001700

ADD TALLY TO MY-COUNTER. 00171000
i1 001710
001710
001710
;001710
Lorrrii:o 001710
MOVE TALLY TO OUT-LINE WRITE OUT-LINE 0017200
MOVE 11 001720
001720
001720
001720
WRITE ::: t:r 001720
MOVE MY-COUNTER TO OUT-LINE WRITE OUT-LINE. 00173000
001720
001730
001730
001730
001730
001730
001730
Lo t:r 001730
THE-END. 00174000
THE-END ::: 11 001740
: 001740
0017500
t:: 001750
001750
001750
001750
OR :: 001750
MY-COUNTER :: : 001750
NOT ::::zzc: : 001750
: 001750

FAILSWCH :

WRITE OUT-LINE FROM FAILCON N 0017é660

001750
001760
001760
HE t:: 001760

OTHERWISE 00177000
FAILCON :::eoszssccozzsssozzzzzzozzzzzzczzze: 001760

WRITE OUT-LINE FROM SUCCESS. 00178000

OTHERWISE :: HE

WRITE ::
OUT-LINE

001770
001780
: 001780

........ : 001780
SUCCESS : 001780
HE 001780

CLOSE PRINT-FILE.
CLOSE::::::::::: .. 001790

PRINT-FILE : ¢ 001790
001790
STOP RUN.
STOP :eoozcsscsoossscosssssoosssssoosssssoossssonssssoossszozsss 001800

RUN ::: 001800

001800

250 ccca

05

13
05
13
21
22
23

10
13

007

011
007
008
001
001
001
008
007
001
009
002
001
001

011
001

003
005
002
010
001

004
005
002
008
005

008
004
010
002
008
005
008
001

007
001

002
008
005
008
002
010
003
005

003
005
008
004

007

009
005
008
004
007
001

005
010
001

004

003
001

W

W

Z2===Z2==

W

=E==== === =

EEE=EZ=Z == =

W

EEZ = === = =

= ====

=E====

W

990

000
990
000
000
000
863
999
999
999
999
999
000
000

860
000

990
999
999
000
000

851
999
999
000
990

000
851
000
999
000
990
000
000

860
000

999
000
991
000
999
000
990
991

000
990
000
999

000

990
990
000
999
000
000

990
000
000

990

999
000

03

03

00

02

02

01

03

03

03

03

03

01

03

03

03

03

03

LCP debugging

This section is Diagnosis, Modification, and Tuning Information.

To help you debug LCPs, CCCA can generate trace output for:
* All LCPs, using the Generate tokenization listing option on Conversion Options
panel 1 (see [“Setting conversion options” on page 19)

e Specific LCPs, using the Delete/Debug LCPs panel (see |"Deleting LCPs and|
[activating / deactivating debugging for LCPs” on page 71)

The following pages show example trace output generated by the OTHERWISE
LCP and EXAMINE LCP.

This output should be used in conjunction with the LCP Compiler output.

The columns of the trace output are described below.

*CONVER
The identifier in the LCP's *CONVER statement.

*DATE
The date the LCP was last compiled (in the format MMDDYY).

TOKEN-TEXT
Indicates for each statement the current token or element.

LCP STMT
Number of statement given by the compiler.

LCP OPCODE
Operation code. See [Appendix F, “List of LCP functions,” on page 187 for a
list of LCP functions and their operation codes.

ID FILE
File used by the LCP:

TOKEN
CHANGE
WORK-nn
RECORD

FILE

KEY

These files are described in ["LCP functions” on page 91| and ["Manipulating]
ffiles” on page 101

RT Return code after reading or writing the files.

RV Internal use.

Appendix H. Sample output 251

5648-B05 V2R1
*CONVER:OTHERWISE
101703

TOKEN-TEXT

OTHERWISE
OTHERWISE
OTHERWISE
OTHERWISE
OTHERWISE

OTHERWISE
OTHERWISE

OTHERWISE

5648-B05 V2R1
*CONVER: EXAMINE
100540

TOKEN-TEXT

EXAMINE
EXAMINE
EXAMINE
EXAMINE
EXAMINE
EXAMINE
EXAMINE

EXAMINE
A-POEM
TALLYING

TALLYING
TALLYING

EXAMINE
EXAMINE

EXAMINE
EXAMINE
EXAMINE
A-POEM
TALLYING
TALLYING

TALLYING
TALLYING

252 CCCcA

- IBM COBOL CONVERSION AID -

- IBM COBOL CONVERSION AID -
*TEXT:CHANGE EXAMINE BY INSPECT

*TEXT:REPLACE OTHERWISE BY ELSE

LCP LCP D
STMT OPCODE FILE *... ...
3 IFEQA
4 IFEQA
6 IFEQA
8 MOVE
9 RP
CHANGE 001150056
CHANGE 001150055
10 MOVE
11 EDMSG
CHANGE 001150053
12 GOTO

LCP LCP 1D
STMT OPCODE FILE Fuve v

10 IFEQA
11 IFEQA
13 IFEQA
15 MOVE
16 MOVE
17 MOVE
18 GTPRT
TOKEN
19 SPLN
CHANGE 001380148
20 MOVE
21 GTNXT
TOKEN
21 GTNXT
TOKEN
22 BYID
TOKEN
23 IFEQA
24 MOVE
25 GTPRT
TOKEN
26 MOVE
27 SF
CHANGE 001380148
28 MOVE
29 EDMSG
CHANGE 001380143
30 MOVE
31 MOVE
32 MOVE
33 MOVE
34 MOVE
35 MVLCP
36 MOVE
37 GOTO
40 GTNXT
TOKEN
41 MOVE
42 RP
CHANGE
CHANGE

001390056
001390055
43 MOVE
44 EDMSG

CHANGE 001390053
45 GTNXT

TOKEN
46 BYID

TOKEN
47 IFEQA
48 PRFTH
53 MOVE
54 INAF

SAMPLE RUN

SAMPLE RUN

17 APR 1998 19:10:10 PAGE 1

*DATE:041598

...... 2 S T - 4
OAELSE 01 Y
Y
OOOTHERWISE REPLACED BY ELSE YABJ602100
17 APR 1998 19:10:10 PAGE 3

00138014001 000 00.

00139005007W990 O3EXAMINE
00139013006W000 OOA-POEM

00139020008W000 OOTALLYING

00138014001 000 00.

18MOVE ZERO TO TALLY

OOTALLY IS INITIALIZED

00139005007W990 O3EXAMINE

07 INSPECT

OOEXAMINE REPLACED BY INSPECT

00139013006W000 OOA-POEM

00139020008W000 OOTALLYING

*DATE: 041598

A T T 6 7

NP

YP

YP

YP

NP

0005N

ABJ601800

YP

01 Y

YABJ601900

YP

YP

-CODE-
RT RV

-CODE-
RT RV

5648-B05 V2R1
*CONVER: EXAMINE

100540

TOKEN-TEXT

TALLYING
TALLYING

TALLYING

ALL
ALL
ALL
ALL

SPACES
SPACES
SPACES
SPACES
SPACES
SPACES
SPACES
SPACES
SPACES

REPLACING
REPLACING
REPLACING
REPLACING
REPLACING
REPLACING

REPLACING
REPLACING
REPLACING

REPLACING
BY

wgn
wen
W
wn
wen
W

nyn

Lcp
STMT

55
56

57

58
59
60
66

67
123
124
125
135
154

68

69

70

71
73
83
84
85
86

87
88
89

90

90

91
123
135
154

93

49

51

- IBM COBOL CONVERSION AID -
*TEXT:CHANGE EXAMINE BY INSPECT

Lcp
OPCODE

MOVE
INAF

GTNXT

MOVE
MOVE
IFEQA
GTNXT

PRFTH
IFEQA
IFEQA
IFEQA
GOTO
EXIT
MOVE
MOVE
GTNXT

IFEQA
IFEQA
IFEQA
MOVE
MOVE
INAF

MOVE
MOVE
INAF

GTNXT
GTNXT

PRFTH
IFEQA
GOTO
EXIT
EXIT
GOTO
GOTO

SAMPLE RUN

1D

FILE Fovw was 2 o0

CHANGE 001390208 O5TALLY

CHANGE 001390208 03FOR

TOKEN ~ 00139029003W990 ALL

TOKEN 00139033006W000 OOSPACES

TOKEN ~ 00139040009W999 02REPLACING

CHANGE 001390408 O3ALL

CHANGE 001390408 06SPACES

TOKEN 00139050002W000 00BY

TOKEN 00139053003L000 00"+"

17 APR 1998 19:10:10 PAGE 4

*DATE: 041598

YP

YP

01 Y
01 Y

YP

YP

Appendix H. Sample output

253

5648-B05 V2R1
*CONVER: EXAMINE

100540
Lcp

TOKEN-TEXT STMT
EXAMINE 10
EXAMINE 11
EXAMINE 13
EXAMINE 15
EXAMINE 16
EXAMINE 17
EXAMINE 18
OUT-LINE 19
OUT-LINE 20
OUT-LINE 21
EXAMINE 21
A-POEM 22
TALLYING 23
TALLYING 24
TALLYING 25
OUT-LINE 26
OUT-LINE 27
OUT-LINE 28
OUT-LINE 29
OUT-LINE 30
OUT-LINE 31
OUT-LINE 32
OUT-LINE 33
OUT-LINE 34
OUT-LINE 35
OUT-LINE 36
OUT-LINE 37
OUT-LINE 40
EXAMINE 41
EXAMINE 42
EXAMINE 43
EXAMINE 44
EXAMINE 45
A-POEM 46
TALLYING a7
TALLYING 48
TALLYING 53
TALLYING 54

254 ccca

- IBM COBOL CONVERSION AID -
*TEXT:CHANGE EXAMINE BY INSPECT

Lcp
OPCODE

IFEQA
IFEQA
IFEQA
MOVE
MOVE
MOVE
GTPRT

SPLN

MOVE
GTNXT

GTNXT
BYID

IFEQA
MOVE
GTPRT

MOVE
SF

MOVE
EDMSG

MOVE
MOVE
MOVE
MOVE
MOVE
MVLCP
MOVE
GOTO
GTNXT

MOVE

1D
FILE

TOKEN

CHANGE

TOKEN

TOKEN

TOKEN

TOKEN

CHANGE

CHANGE

TOKEN

CHANGE

CHANGE

CHANGE

TOKEN

TOKEN

SAMPLE RUN 17 APR 1998 19:10:10 PAGE
*DATE:041598

Fovw was 2 o0 3. b L, 5.0 ... 6
00142044008W000 0OOUT-LINE YP
001420448 Y
00143005007W990 O3EXAMINE YP
00143013006W000 OOA-POEM YP
00143020008W000 OOTALLYING YP
00142044008W000 OO0OUT-LINE YP
001420448 18MOVE ZERO TO TALLY 0005Y
001420443 OOTALLY IS INITIALIZED ABJ601800
00143005007W990 O3EXAMINE YP
001430056 07 INSPECT 01 Y
001430055 Y
001430053 OOEXAMINE REPLACED BY INSPECT YABJ601900
00143013006W000 OOA-POEM YP
00143020008W000 OOTALLYING YP

5

5648-B05 V2R1
*CONVER: EXAMINE

100540

TOKEN-TEXT

TALLYING
TALLYING

TALLYING

ALL
ALL
ALL
ALL

W
wen
wen
W
wen
wen

nyn

Lcp
STMT

55
56

57

58
59
60
66

67
123
135
154

68

69

70

71
72
93
49
51

- IBM COBOL CONVERSION AID -
*TEXT:CHANGE EXAMINE BY INSPECT

Lcp
OPCODE

MOVE
INAF

GTNXT

MOVE
MOVE
IFEQA
GTNXT

PRFTH
IFEQA
GOTO
EXIT
MOVE
MOVE
GTNXT

IFEQA
GOTO
EXIT
GOTO
GOTO

SAMPLE RUN

1D

FILE Fovw was 2

CHANGE 001430208 O5TALLY

CHANGE 001430208 03FOR

TOKEN ~ 00143029003W990 ALL

TOKEN 00143033003L000 00"*"

TOKEN 00143036001 000 00.

17 APR 1998 19:10:10 PAGE 6
*DATE: 041598

YP

YP

NP

Appendix H. Sample output

255

256 ccca

Appendix I. Maintaining CCCA under MVS

This chapter describes how to re-install CCCA and how to apply service updates
to CCCA. To use the maintenance procedures effectively, you should have already
installed CCCA and any required products.

In addition, this chapter describes how to remove CCCA.

Re-installing CCCA

The action required here depends on the circumstance. If you want to re-install
and you did not use the SMP/E ACCEPT command then use a SMP/E APPLY
REDO command. However, if you did use the SMP/E ACCEPT command, then
the product should be deleted before installing again. For more information refer
to ['Removing CCCA” on page 258

Applying service updates

You might need to apply maintenance or service updates to CCCA periodically.

What you receive

If you report a problem with CCCA to your IBM Support Center, you will receive
a tape containing one or more APARs or PTFs that have been created to solve your
problem.

You might also receive a list of prerequisite APARs or PTFs, which should have
been applied to your system before applying the current service. These prerequisite
APARs or PTFs, might relate to CCCA or any other licensed product you have
installed, including MVS.

To help you understand the service process, the following overview familiarizes
you with applying service for CCCA.

Checklist for applying service

lists the steps and associated SMP/E commands for installing corrective
service on CCCA. You can use as a checklist.

Table 8. Summary of steps for installing service on CCCA

Step Description SMP/E Command
_ 1 Prepare to install service.

_2 Receive service. RECEIVE

_3 Accept previously applied service. (optional) ACCEPT

4 Apply service. APPLY

_5 Test service.

_ 6 Accept service. ACCEPT

Step 1. Prepare to install service

Before you start applying service:

© Copyright IBM Corp. 1982, 2013 257

1. Create a backup copy of the current CCCA. Save this copy of CCCA until you
have completed installing the service and you are confident that the service
runs correctly.

2. Research each service tape through the IBM Support Center for any errors
and/or additional information. Note all errors on the tape that were reported
by APARs and apply the applicable fixes.

Step 2. Receive the service

Receive the service using SMP/E RECEIVE command. This can be done from the
SMP/E dialogs in ISPF or using a batch job.

Step 3. Accept applied service (optional)

Accept any service you applied earlier but did not accept, if you are satisfied that
the earlier service is not causing problems in your installation. This can be done
from the SMP/E dialogs in ISPF or using a batch job. Accepting the earlier service
allows you to use the SMP/E RESTORE command to return to your current level if
you encounter a problem with the service you are currently applying. This can be
done from the SMP/E dialogs in ISPF or using a batch job.

Step 4. Apply the service

Apply the service using SMP/E APPLY command. You should use the SMP/E
APPLY command with the CHECK operand first. Check the output; if it shows no
conflict, rerun the APPLY without the CHECK option. This can be done from the
SMP/E dialogs in ISPF or using a batch job.

Step 5. Test the service

Thoroughly test your updated CCCA. Do not accept a service update until you are
confident that it runs correctly.

In the event of a serious problem, you can restore the backup copy of CCCA.

Step 6. Accept the service

Accept the service using SMP/E ACCEPT command. You should use the SMP/E
ACCEPT command with the CHECK operand first. Check the output; if it shows
no conflict, rerun the ACCEPT without the CHECK option. This can be done from
the SMP/E dialogs in ISPF or using a batch job.

Removing CCCA

258 ccca

To delete CCCA, you must:
* Make sure no other products depend on it.
¢ Use a dummy function SYSMOD to delete it.

* Receive, apply and accept the dummy function, and run the UCLIN to delete
the SYSMOD entries for the deleted function and the dummy function.

Edit and submit job ABJDELO to delete CCCA. Consult the instructions in the
sample job for more information.

Expected Return Codes and Messages: You receive message GIM39701W because the
dummy function SYSMOD has no elements. The SMP/E RECEIVE command
returns a return code of 4. If any USERMODs have been applied then the SMP/E

APPLY command issues a GIM44502W message indicating USERMOD changes will
be lost with a return code of 4. Both these warning messages can be ignored.

The target and distribution libraries can now be deleted.

Reporting a problem with CCCA

Report any difficulties with this product to your IBM Support Center. In the
United States, if an APAR is required, submit the data to the location identified in
the Field Engineering Programming System General Information manual (PSGIM),
(G229-2228, as being responsible for the failing component.

identifies the component ID (COMP ID) for CCCA.
Table 9. Component IDs

FMID COMP ID |Component Name REL
COBOL and CICS Command Level Conversion Aid
HO09F210 5648B0500 |for OS/390 & MVS & VM 210

Obtaining service information

Preventive Service Planning (PSP) information is continually updated as fixes are
made available for problems. Check with your IBM Support Center or use either
Information/Access or SoftwareXcel Extended to see whether there is additional
PSP information you need. To obtain this information, specify the following
UPGRADE and SUBSET values: CCCA210 and H09F210.

Appendix I. Maintaining CCCA under MVS 259

260 ccca

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Licensees of this program who wish to have information about it for the purpose
of enabling (1) the exchange of information between independently created
programs and other programs (including this one) and (2) the mutual use of the
information that has been exchanged, should contact:

IBM Corporation
J46A /G4

555 Bailey Avenue
San Jose, CA
95141-1003

US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

© Copyright IBM Corp. 1982, 2013 261

Notices

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Programming interface information

This book primarily documents information that is NOT intended to be used as
Programming Interfaces of COBOL and CICS Command Level Conversion Aid for
0S/390 & MVS & VM.

This book also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of COBOL and CICS Command
Level Conversion Aid for OS/390 & MVS & VM. This information is identified
where it occurs by an introductory statement to a chapter or section.

Trademarks

262 CCCA

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

Bibliography

IBM COBOL for OS/390 & VM

Compiler and Run-Time Migration Guide, GC26-4764
Programming Guide, SC26-9049

Language Reference, SC26-9046

Related Publications for OS/390 & VM

+ Language Environment®
Programming Guide, SC28-1939
Programming Reference, SC28-1940

IBM COBOL for MVS & VM

Compiler and Run-Time Migration Guide, GC26-4764
Programming Guide, SC26-4767
Language Reference, SC26-4769

Related Publications for MVS & VM

* Language Environment
Programming Guide, SC26-4818
Programming Reference, SC26-3312

Enterprise COBOL for z/0S & 0S/390

Migration Guide, GC27-1409
Language Reference, SC27-1408
Programming Guide, SC27-1412

Other publications

VM/ESA

Application Development Guide, SC24-5450

Application Development Reference, SC24-5451
Command Reference, SC24-5461
User’s Guide, SC24-5460

CICS/ESA

Application Programming Guide, SC33-1169
Application Programming Reference, SC33-1170

Softcopy Publications for 0OS/390, MVS, and VM

The following collection kits contain IBM COBOL or related product publications.
MVS Collection, SK2T-0710

0S5/390 Collection, SK2T-6700
VM Collection, SK2T-2067

© Copyright IBM Corp. 1982, 2013 263

264 CCCA

Index
A

ABEND status 58
ACCEPT MESSAGE COUNT
conversion 117
ACTUAL KEY conversion 118
ADD (LCP statement) 84
ADD conversion 142
Add DATE FORMAT clause to all date
fields 22
ALPHABET clause conversion 118
ALPHABETIC class conversion 118
APAR 257
apostrophe
enclosing character in LCP 81
APPLY clause conversion
CORE-INDEX 118
CYL-INDEX 118
CYL-OVERFLOW 118
EXTENDED-SEARCH 118
MASTER-INDEX 118
RECORD-OVERFLOW 118
REORG-CRITERIA 118
WRITE-VERIFY 118
applying maintenance 257
applying service checklist 257
applying service updates 257
arithmetic in CICS BLL cells, flagging 22
ASSIGN
clause conversion 119
integer conversion 119
ASSIGN...OR conversion 119
AUTHOR conversion 119

backup of CCCA (MVS) 258
batch mode conversion, MVS 27
BDAM conversion 119
before you convert 8
blank lines in an LCP 81
BLANK WHEN ZERO conversion 120
BLL (Base Locator for Linkage)
cells in linkage section 29
conversion description 4
conversion method 22
flagging arithmetic in 22
BLOCK CONTAINS conversion 120
bypassing
token identifiers 93
token processing 100

C

CALL statement
conversion 120
generate abend CALL statements 24
CALL statements in converted
programs 55
call/program report 55
CALL...USING statements, flagging 23

© Copyright IBM Corp. 1982, 2013

change code 67
character set, LCP 78
check procedure names 22
CICS
conversion description 4
conversion option 29, 33
conversion, sample COBOL
program 222
record, manipulating 106
statements converted 141
class, CCCA job
conversion job 9
CLOSE FOR REMOVAL conversion 121
CLOSE...WITH DISP/POSITIONING
conversion 121
CMPR2 17, 117
COBOL
DOS/VS COBOL 17, 117
Enterprise COBOL 18
IBM COBOL 18
language elements converted 117
OS/VS COBOL 17, 117
programs, converting 17
sample conversion
program 211
with CICS commands 222
with COPY 217
VS COBOLII 17,18, 117
COBOL 68 Standard, definition 5
COBOL 74 Standard, definition 5
COBOL 85 Standard, definition 5
COBOL Conversion Aid message
panel 74
COBOL conversion Job Statement
Information panel 27
COBOL conversion Selection 28
COBOL conversion Submission panel 31
COBOL reserved word panel 66

COBOL standards 117
COBOL Standards 17, 23
COBOL/370

reserved word table
updating 66

COBOL/VSE

language elements converted to 117
columns, LCP source line 78
COM-REG conversion 121
comment lines, LCP 80
comment paragraphs, list of 63
comments about the conversion 57
communication module conversion 121
compile after converting 22

return code 24, 52
compiler, LCP

error messages 148

predefined data items

reserved words 167
COMPLETE status 58
component id 259
component name 259
COMPUTE conversion 142

175

conditions, LCP 84
CONFIGURATION SECTION header
conversion 122
confirm erase log panel 58
constructing tokens 96
control file 49, 57
controlling LCP invocation 106
CONVER (LCP statement) 81
conversion
batch mode, MVS 27
BLL cells in linkage section 29
CICS commands 141, 191
CICS description 4
COBOL language elements 117
converting COBOL programs 17
date and time program was last
converted 50
debug output 19
DLI 29
error messages 151
EXEC CICS commands 29
file organization 52
LCP debug sample output 251
output, specifying 19
phases, batch job 4
reducing conversion time 23
return code 37
revision number 50
sample
COBOL program 211
with CICS commands
with COPY 217
SQL 29
VM 32
conversion log
See log, conversion
Conversion Member List panel 28
Conversion Member Selection panel
conversion method, BLL cells 22
Conversion Selection panel 32
converted CICS commands 191
converted COBOL statements 191
converter error messages 145
converter menu 12
converting reserved words
copy books
See copy members
COPY conversion 122
copy members
generate new 19
print in diagnostic listing 19
replace like-named 19
used by converted programs 54
copy/program report 54
COPY...REPLACING conversion 123
CURRENCY SIGN conversion 123

222

133

32

CURRENT-DATE conversion 20, 123

customizing CCCA
how a language element is
converted 64

265

customizing CCCA (continued)
to convert an additional language
element 64

D

data division, LCP 83
data item identifier, LCP 79, 83
data name, date identification file 42
DATA RECORDS conversion 124
date and time
manual conversion completed 57
program was last converted 50
DATE COMPILED conversion 124
DATE FORMAT clause
checking syntax 46
description 40
including 24
on Conversion Options panel 2 22
DATE FORMAT conversion option
description 39
how it works 46
overview 2
selecting 24, 46
date format, date identification file 42
date format, VSE system 19
date identification file
creation of 42
date identification file 42
description 42
examples 45
format 42
data name 42
date format 42
line number 42
program name 42
supplying to CCCA 42
DATE WRITTEN conversion 124
DATE-COMPILED conversion 124
DATE-WRITTEN conversion 124
debugging
activating/deactivating for a
particular LCP 71
diagnostic listing output 19
tracing executed statements
of a particular LCP 71
of all LCPs 19
declaratives conversion 124
default code, COBOL reserved 67
delete product
MVS 258
deleting LCPs 71
delimiter, COBOL
in Program/File report 50
search source for 22
specifying 22
diagnostic listing
*OLD** 21
debug output 19
heading 19
print copy members 19
print diagnostics of level >= 19
print old source lines 19
reading 35
tailoring 35
directory of the LCP library 72
DISABLE conversion 124

266 ccca

DIVIDE...ON SIZE ERROR 124

divisions, LCP 78

DLI option 29

DOS/VS COBOL 17, 117

Double-Byte Character Set, in date
identification file 42

E

editing tokens 96
element
definition 91
difference from token 111
processing 111
removing 94
retrieving 92
ENABLE conversion 124
enclosing character, LCP 81
END PROGRAM header, generate 22
END-EXEC conversion 143
ENTER statement conversion 124
environment options 8
erasing the conversion log 58
ERROR DECLARATIVES GIVING
conversion 124
error messages
converter 145
diagnostics from LCPs 151
LCP compiler 148
tokenizatio diagnostics 150
EXAMINE conversion 124
EXEC CICS command 29
EXHIBIT conversion 124
EXIT (LCP statement) 86
EXIT PROGRAM statement
conversion 125

F

file manipulation, LCP 101
FILE STATUS conversion 125
FILE-LIMIT(S) conversion 125
file/program report 53
files
CCCA messages 73
conversion required? 52
organization before/required after
conversion 52
used by a program 50
flagged COBOL statements 195
flagging
BLL cell arithmetic 22
CALL...USING statements 23
IF FILE-STATUS (NOT) = "00" 22
Report Writer statements 22
turning off to reduce conversion
time 23
USE FOR DEBUGGING
declaratives 23
fmid 259
FOR MULTIPLE REEL/UNIT clause
conversion 127
foreground conversion, VM 32
format notation, description x
function keys 10
function modification ID 259

functions, LCP
list of 187
using 91

G

generate
END PROGRAM header 22
new copy members 19
new program 19
GET- LCP functions 92
GO TO (LCP statement) 86
GREATER THEN conversion 125

H

header, generate END PROGRAM 22
heading, report 19

IBM Support Center
APARs and PTFs 257
UPGRADE value and SUBSET ID,
MVS 259
identifier, LCP data item 83
IF (LCP statement) 86
IF conversion 126
IF FILE-STATUS (NOT) = "00" statements,
flag 22
increment, sequence number 19
indexes (qualified) 126
industry standards 5
Information/Access 259
INITTIALIZE conversion 126
inserting tokens 94
INSTALLATION conversion 126
installation verification, MVS 258
installation, MVS
installation verification program (IVP)
service installation 258
ISAM conversion 126

J

job cards, updating 27, 68
JUST RIGHT conversion 127
JUSTIFIED conversion 127

L

LABEL RECORDS clause
conversion 127
LANGLVL 17, 117
language level panel 17
LCP Development Aid
message panel 74
reserved word table updating 66
LCP development aid menu 14
LCP functions 91
LCP-nnn identifier 82
LCPs
activating/deactivating
debugging 71
blank lines 81

LCPs (continued)
character set 78
comment lines 80
controlling invocation 106
data item identifier 79, 83
deleting 71
description 63, 77
developing 77
directory (sample output) 201
directory of the LCP library 72, 191
divisions 78

functions 91, 187
language structure 78
literals

nonnumeric 80
numeric 80
messages 150, 151
modifying 77
number invoked during program
conversion 50
paragraph name 79, 88
predefined data items 175
processing of 107
punctuation 80
reserved words 79, 167
source line columns 78
source member name 82
statement summary 81
statements
ADD 84
CONVER 81
EXIT 86
GO TO 86
IF 86
MOVE 88
PERFORM 89
SUBTRACT 90
using periods 80
LESS THEN conversion 127
line number, date identification file 42
LINE(S) conversion 139
lines per report page 19
linkage section, BLL cells in 29
literal delimiter, COBOL
in Program/File report 50
search source for 22
specifying 22
literals - nonnumeric conversion 127
log, conversion 57
browsing 57
erasing 58
updating 57
logical files, manipulating 101

M

maintenance 257
MAN. COMP status 58
manual changes, flag 22
manual conversion
comments 57
statistics, browsing and updating 57
manuals, useful for CCCA 263
master menu 12
member name, LCP source 82
MEMORY SIZE conversion 127

menus

converter 12

LCP development aid 14

map of 10

master 12

navigating 10

options 15
message file, viewing and updating 73
messages

converter 145

diagnostics from LCPs 151

tokenization diagnostics 150
millennium language extensions

See MLE
MLE

description 39
MM/DD/YY vs. DD/MM/YY (DOS/VS

COBOL only) 20
modifying tokens 94
MOVE (LCP statement) 88
MOVE ALL literal conversion 127
MOVE conversion 127, 143
MOVE CORRESPONDING
conversion 127

MULTIPLE FILE/TAPE conversion 128
MULTIPLY...ON SIZE ERROR 128
MVS

batch mode conversion 27

N

navigating menus and panels 10
NOCHANGE status 58
NOCMPR2 18, 117

NOMINAL KEY conversion 128
nonnumeric literals, LCP 80
NOT conversion 128

notation, description x

NOTE conversion 128
NSTD-REELS conversion 128
numeric literals, LCP 80

(o)

obsolete elements, remove 22
OCCURS clause 128
OCCURS DEPENDING ON clause
conversion 129
OPEN...DISP conversion 130
OPEN...LEAVE conversion 130
OPEN...REREAD conversion 130
OPEN...REVERSED conversion 131
options, CCCA
BLL cell conversion method 22
BLL cells in linkage section 29
check procedure names 22
conversion 19
conversion debug output 19
DLI 29
environment 8
EXEC CICS commands 29
flag BLL cell arithmetic 22
flag IF FILE-STATUS (NOT) =
"00" 22
flag Report Writer statements 22

generate END PROGRAM header 22

options, CCCA (continued)
generate new copy members 19
generate new program 19
language level 17,29, 33
lines per report page 19
literal delimiter (QUOTE or
APOST) 22
menu 15
MLE conversion 22
Negate implicit EXIT PROGRAM 22
print copy members 19
print diagnostics of level >= 19
print old source lines 19
remove obsolete elements 22
remove VALUE clauses 22
replace like-named copy members 19
report heading 19
reporting options used by converted
programs 50
resequence source lines 19
reserved word suffix 19
search source for literal delimiter 22
sequence number increment 19
SQL 29
VSE system date format 19
ORGANIZATION clause conversion 131
organization of files before/required after
conversion 52
0S/VS COBOL 17, 117
OTHERWISE conversion 131
output class, non default 27, 68
output, sample
call/program report 201
compilation of an LCP 205
conversion
COBOL program 211
with CICS commands 222
with COPY 217
copy/program report 200
file/program report 200
LCP debugging 251
LCP directory 201
program/file report 199
tokenization 238

P

panels
COBOL reserved word panel 66
confirm erase log 58
conversion options 1 19
conversion options 2 22
converter menu 12, 13
environment options 8
language level 17
LCP development aid menu 14
map of 10
master menu 12
navigating 10
options 15
panels, Conversion Aid
batch LCP compilation (Job Statement
Information) 68
batch LCP compilation (Selection) 69
batch LCP compilation
(Submission) 69

267

Index

panels, Conversion Aid (continued)
COBOL conversion Job Statement
Information 27
COBOL conversion Selection 28
COBOL conversion Submission 31
LCP Compiler Selection (VM) 70
LCP selection 69
panels, Member list
COBOL conversion 28
panels, Member selection, VM
COBOL conversion 32
panels, VM Conversion
Conversion selection 32
paragraph names, LCP 88
PERFORM (LCP statement) 89
PERFORM/ALTER conversion 131
performance
improving by turning off flagging 23
period insertion 131
periods, using in LCPs 80
PF keys 10
phases, batch conversion job 4
physical files
description 101
PIC/PICTURE flagging 131
picture P in RELATIVE KEY
conversion 133
post-conversion compile
See compile after converting
predefined data items
description 91
list of 175
prerequisites 257
preventive service plan
UPGRADE value and SUBSET 1D,
MVS 259
print copy members 19
print diagnostics of level >= 19
print old source lines 19
problem
reporting, MVS 259
procedure division, LCP 84
procedure names, check 22
PROCESS clause conversion 132
PROCESSING MODE conversion 132
program function keys 10
program name conversion 132
program name, date identification
file 42
PROGRAM-ID conversion 132
program/call report 56
program/copy report 54
program/file report 50
PSP 259
PTF
service tape, MVS 257
punctuation, LCP 80

Q

quotation mark
enclosing character in LCP 81

268 ccca

R

railroad track format, how to read x
re-installing, MVS 257
READ statement conversion 132
READY TRACE conversion 132
RECEIVE conversion 132
RECORD CONTAINS conversion 132
RECORDING MODE clause
conversion 132

records

description 101

fixed-use, manipulating

CALL 104

COPY 104

FILE 103

KEY 105

OPTION 102
PROGRAM 103
RECORD 105

variable-use, manipulating

CICS 106
WORK-nn 105

REDEFINES clause in FD
conversion 133
REDEFINES clause in SD
conversion 133
REMARKS paragraph conversion 133
remove
elements 94
obsolete elements 22
tokens 94
remove VALUE clauses in File/Linkage
sections 22
REPLACE conversion 133
replace like-named copy members 19
report heading 19
REPORT WRITER statements
conversion 133
Report Writer statements, flag 22
reports
call/program 55
copy/program 54
file/program 53
generating 49
heading 19
LCP directory 72
lines per page 19
program/call 56
program/copy 54
program/file 50
sample output 199
required words x
resequence source lines 19
RESERVE AREAS conversion 133
reserved word file, COBOL 66
change code 67
default code 67
word type 67
reserved word suffix 19
reserved words
table, description 66
reserved words, LCP
description 79
list of 167
used by the LCP compiler 167
RESERVES ALTERNATES AREAS
conversion 133

RESET TRACE conversion 133
RETAIN release 259
retrieving elements 92
retrieving tokens 92
return code
compile after conversion 24, 52
program conversion 37
revision number, converted program 50
REWRITE statement conversion 134

S

SAME AREA clause conversion 134
SEARCH...WHEN conversion 134
SECURITY conversion 134
SEEK conversion 134
SELECT OPTIONAL conversion 134
SEND conversion 134
sequence number increment 19
service
checklist, MVS 257
process for MVS 257
SERVICE RELOAD conversion 143
SET..TO TRUE 134
setting conversion option for 29
severity level 74
filtering from diagnostic listing 19
signed VALUE conversion 138
SMP/E
ACCEPT 258
APPLY 258
APPLY CHECK 258
APPLY REDO 257
RECEIVE 258
SoftwareXcel Extended 259
source language level 17, 29, 33
SQL option 29
START...USING KEY conversion 135
statement summary, LCP 81
statistics
CALL statements in converted
programs 55
CICS option 51
converted program status 50, 58
copy members used by converted
programs 54
date and time a program was last
converted 50
deleting 58
files used by converted program 50
language level 50
literal delimiter used in COBOL
program 50
number of LCPs invoked during
program conversion 50
number of user-defined words
appended by suffixes 50
options used by converted
program 50
revision number of converted
program 50
status
converted program 50, 58
STRING conversion 135
structure, LCP language 78
Subset ID 259
SUBTRACT (LCP statement) 90

SUBTRACT conversion 143

suffix, reserved word 19

suffixes, number of user-defined words
appended by 50

syntax notation, description x

system date format, VSE 19

-

target language level 17
THEN conversion 135
time and date a program was last
converted 50
TIME-OF-DAY conversion 136
token
difference from element 111
token identifiers, bypassing 93
token processing, bypassing 100
TOKEN-POINTER, moving 93
tokenization 108
error messages 150
sample output 238
tokenized source, manipulating using
LCPs 91
tokens
constructing 96
editing 96
inserting 94
modifying 94
removing 94
retrieving 92
TOTALING/TOTALED AREA
conversion 136
TRACE conversion 136
tracing executed LCP statements
of all LCPs 19
of specific LCPs 71
TRACK-AREA conversion 136
TRACK-LIMIT conversion 136
TRANSFORM statement conversion 137

U

UNSTRING 137
Upgrade
value, MVS 259
UPSI name conversion 138
USE AFTER LABEL PROCEDURE
conversion 138
USE AFTER STANDARD
conversion 138
USE BEFORE STANDARD
conversion 138
USE FOR DEBUGGING conversion 138
USE FOR DEBUGGING declaratives,
flagging 23
USE procedures (precedence of) 138
user-defined words appended by suffixes,
number of 50
using CCCA as supplied 12

\'

VALUE clause 22
VALUE in 88 level conversion 138
VALUE OF conversion 139

VALUES conversion 138
verification
after service 258
VM
conversion 32
VS COBOLII 18
converted COBOL language
elements 117
language elements converted to 117
reserved word table
updating 66
setting source language level 17
VSE system date format 19

w

WARNING status 58
what you receive
service 257

WHEN-COMPILED conversion 139
WHEN-COMPILED date, converting 20
word type, COBOL reserved 67
WORK-nn records 105
WRITE ... AFTER POSITIONING

conversion 139
WRITE statement conversion 139

270 ccca

Printed in USA

5C26-9400-03

	Contents
	Tables
	Figures
	About this book
	How this book is organized
	How to read the syntax diagrams

	Summary of changes
	Fourth edition (July 2013)
	Third edition (September 2002)
	Second edition (October 1988)

	Chapter 1. Introduction
	What CCCA does
	Converting to COBOL 85 Standard Language
	Converting using the Millennium Language Extensions

	How CCCA works
	BLL cell conversion

	Industry standards

	Chapter 2. Getting started
	Dealing with source produced by earlier COBOL compilers
	What to do before converting
	Accessing CCCA
	Setting environment options (MVS only)
	Navigating the menus and panels
	Master menu
	Converter menu
	LCP Development Aid menu
	Options menu

	Chapter 3. Converting COBOL programs
	Setting source and target language levels
	When the source and target language levels are the same
	DATE FORMAT conversion option

	Setting conversion options
	Submitting the conversion job under MVS
	Running the conversion job under VM
	Reading the Diagnostic listing
	Conversion return codes

	Chapter 4. DATE FORMAT Conversion Option
	Millennium Language Extensions (MLE) and Date Fields
	Definition of terms
	Date Field
	Windowed Date Field
	Expanded Date Field

	Century window

	DATE FORMAT Clause
	What you need to supply to CCCA
	Date Identification file
	Format
	Comment lines
	Examples of date identification file contents

	Selecting the DATE FORMAT Conversion Option
	How the DATE FORMAT Conversion Option works
	Checking DATE FORMAT Clause syntax

	Chapter 5. Conversion reports and the conversion log
	Generating conversion reports
	When there's nothing to report...
	Program/File report
	File/Program report
	Copy/Program report
	Program/Copy report
	Call/Program report
	Program/Call report

	Using the conversion log
	Browsing or updating the conversion log
	Erasing the conversion log

	Chapter 6. Customizing CCCA
	How CCCA invokes LCPs
	Customizing the way CCCA converts a language element
	Customizing CCCA to convert an additional language element
	Updating the COBOL reserved word Data Set
	Compiling LCPs under MVS
	Compiling LCPs under VM
	Deleting LCPs and activating/deactivating debugging for LCPs
	Generating a directory of the LCP library
	Updating the message file

	Chapter 7. Developing Language Conversion Programs
	What is an LCP?
	What LCPs do

	LCP structure
	LCP divisions
	LCP source line format
	Characters
	Data item identifiers and paragraph names
	Reserved words
	Literals
	Comment lines
	Punctuation

	LCP statement summary
	Identification Division
	CONVER statement

	Data Division (Optional)
	Procedure Division
	ADD statement
	Conditions
	Simple conditions
	Combined conditions

	EXIT statement
	GO TO statement
	IF statement
	MOVE statement
	Paragraph names
	PERFORM statement
	SUBTRACT statement

	LCP functions
	Using LCP functions
	Retrieving tokenized source
	Moving through the tokenized source

	Bypassing token identifiers
	Removing tokenized source
	Modifying tokenized source and inserting tokens
	Editing tokens
	DIAGNOSTIC function
	EDIT-MESSAGE function

	Constructing tokens
	DETERMINE-LENGTH function
	MOVE-LCP function
	STRING-LCP function
	UNSTRING-LCP function
	CONVERT-ALPHA-NUMERIC function
	BYPASS-POINTER function

	Manipulating files
	Control file
	OPTION record
	PROGRAM record
	FILE record
	CALL record
	COPY record

	Work file
	KEY record
	RECORD record
	WORK-nn records
	CICS record

	Using LCPs
	Controlling LCP invocation
	Processing LCPs

	Tokenization
	Debugging LCPs
	Processing differences between tokens and elements

	Appendix A. Converted COBOL language elements
	Appendix B. Converted CICS commands
	Linkage section
	Working-Storage Section

	Appendix C. Messages
	Converter error messages
	LCP compiler error messages
	Tokenization diagnostics
	Conversion diagnostics from LCPs

	Appendix D. LCP reserved words
	Appendix E. Predefined data items
	Appendix F. List of LCP functions
	Appendix G. LCP directory
	Converted CICS commands
	Completely converted COBOL statements
	COBOL statements converted with warning
	COBOL statements flagged
	LCPs corresponding to information

	Appendix H. Sample output
	Program/File report
	File/Program report
	Copy/Program report
	Call/Program report
	LCP directory
	Compilation of an LCP
	COBOL conversion
	COBOL conversion with COPY
	COBOL conversion with CICS commands
	Tokenization
	LCP debugging

	Appendix I. Maintaining CCCA under MVS
	Re-installing CCCA
	Applying service updates
	What you receive
	Checklist for applying service
	Step 1. Prepare to install service
	Step 2. Receive the service
	Step 3. Accept applied service (optional)
	Step 4. Apply the service
	Step 5. Test the service
	Step 6. Accept the service

	Removing CCCA
	Reporting a problem with CCCA
	Obtaining service information

	Notices
	Programming interface information
	Trademarks

	Bibliography
	IBM COBOL for OS/390 & VM
	IBM COBOL for MVS & VM
	Enterprise COBOL for z/OS & OS/390
	Other publications

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

